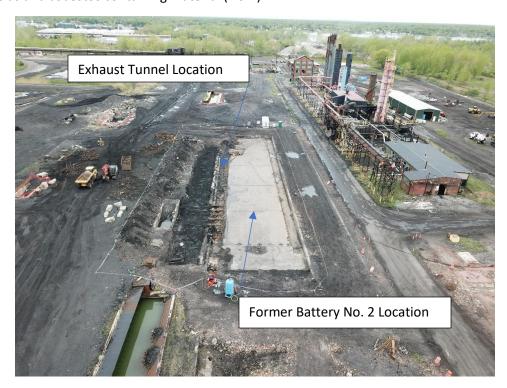


July 1, 2022

To: Benjamin McPherson

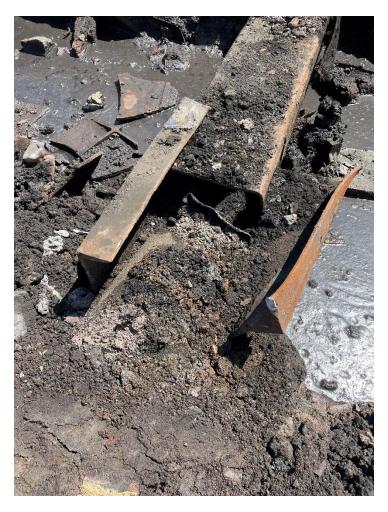
From: John Black


CC: John Yensan, Daniel Flanigan, Kirsten Colligan, Roxaanne Birx, and Peter Zaffram

RE: Backfill Interim Remedial Measure Work Plan

Exhaust Tunnel – South Side of Battery No. 2 Riverview Innovation & Technology Campus, Inc.

Town of Tonawanda, New York NYSDEC Site No. C915353


Following the demolition of the No. 2 coke oven battery (hereafter referred to as the "battery") at the Riverview Innovation & Technology Campus (RITC) the former exhaust tunnel along the south side of the battery basement was exposed. The tunnel (Photograph No. 1) was capped with concrete supported by rectangular steel beams. The beams contained vermiculite (Photograph No. 2) which is classified in New York State as and asbestos containing material (ACM).

 ${\bf Photograph\ No.\ 1-Exhaust\ Tunnel\ Looking\ West,\ After\ Removal\ of\ Tunnel\ Roof}$

Photograph No. 2 – Rectangular Beam with Vermiculite Fill

The water and sediment in the tunnel were assumed to contain ACM and were treated and disposed as ACM. 56 Services provided the independent monitoring and inspection for the ACM abatement. Following the dewatering and ACM inspection, the western section of the tunnel was inspected from the battery basement level. The tunnel walls and floor/base slab are compromised. The walls have lost the outer layer of concrete and one layer of reinforcing steel (Photograph No. 3 and No. 4). The grid pattern visible in the sidewall photographs is the reinforcing steel pattern that had been encased in an additional 2-inched of concrete. Both the outer layer of concrete and the reinforcing steel are missing from a majority of the tunnel. The floor concrete is deteriorated (Photograph No. 3) to the extent that the hydraulic excavator used to remove the sediment periodically removes pieces of concrete. The opening/access created by removal of the tunnel roof has revealed the condition of the tunnel and no personnel are allowed to enter the former tunnel.

Photograph No. 3 – Floor/base Slab and Southern Wall 100-feet from West End of Exhaust Tunnel

Photograph No. 4 – Floor/base 30-feet from West End of Exhaust Tunnel

The former tunnel is approximately 400 feet long, extending from the west end of former battery No. 2 to the former battery stack location. The depth of the tunnel varies from approximately 10-feet deep at the west end of the tunnel to 14-feet deep at the former stack location.

The water in the tunnel potentially contained ACM so it was managed in accordance with the ACM protocols; filtered through a 5 micron filter, treated in a granulated activated carbon vessel, and conveyed to the groundwater treatment system IRM system for secondary treatment prior to discharge to the Town of Tonawanda Sewer System. Following the initial dewatering, the water in the tunnel was found to contained elevated concentrations of Ammonia (Table 1, Attachment A). The ammonia concentrations detected were 40- to 124-times the SWPPP discharge criteria. The battery is not a monitored SWPPP location, but the presence of water with these concentrations in the vicinity of the box culvert could be at potential source contributing to the ammonia concentrations detected at Outfall #001. After being dewatered, the tunnel was monitored and gained approximately 6-inches of water over a weekend period. This equates to an average of approximately 3 gallons per minute of inflow to the tunnel. The tunnel is much deeper and in poorer condition that the box culvert, so less flow could have reached the box culvert.

The open tunnel presents a significant safety hazard, and absent the lateral support of the tunnel roof, could ultimately lead to a partial or complete collapse. The influent, if representative of groundwater in the vicinity of the tunnel, represents a potential source for the box culvert and ultimately Outfall #001.

Inventum Engineering is proposing to fill the former exhaust tunnel to eliminate the safety hazard while providing a system capable of collecting the seepage for conveyance to the treatment system. The proposed system would consist of placement of a minimum 3-inch diameter corrugated perforated tubing surrounded by #57 crushed stone aggregate. The pipe will be placed from the basement slab level using pipe or lumber (entry in the tunnel voids is prohibited). The tubing will be covered and surrounded with a minimum of 6-inches of crushed stone aggregate to allow collection of infiltrating water. A 36-inch (nominal) sump will be constructed at the south end of the tunnel and will be equipped with a submersible pump. Conveyance tubing will be installed to convey collected water from the sump to the treatment system.

Following placement of the collection tubing and crushed stone aggregate, the tunnel void will be filled to no less than 4 feet above the collection pipe with brick from the battery. The brick was over this location for decades and has been sampled and tested (Table 2, Attachment B). The brick is not ACM, and although it is brick, would meet the commercial Soil Cleanup Objectives (SCOs) if it were soil. The import request form is attached (Attachment C). A separation/marker layer of non-woven geotextile fabric (Mirafi 140N or approved substitute) will be placed over the brick fill. The material removed from over the tunnel roof will be placed and compacted over the fabric. The fill will be placed in lifts no greater than 12-inches thick and will be compacted by no less than two passes of a smooth drum compactor. The fill will be placed to allow the tunnel location to drain toward the battery foundation slab.

The sump will be operated on a manual basis, to balance accumulated water with treatment system capacity. After backfilling, the initial volumes of water extracted from the collection sump will be filtered and treated in accordance with the ACM protocols. Following initial evacuation, a fifth sample of the water will be collected as representative on the steady state water quality to verify it is consistent with the water quality submitted for approval of the tunnel water under Permit No. 331.

Please let us know if you have any questions about the proposed filling of the battery tunnel.

Engineering Certification

I, John. P. Black certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Backfill Interim Remedial Measure, Exhaust Tunnel - South Side of Battery No. 2 was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Respectfully Submitted,

Inventum Engineering, P.C.

John P. Black, P.E.

License No:

067818-1

It is a violation of the laws of New York, for any person, unless acting under the direction of a Licensed Professional Engineer, to alter any item or any portion of this document in any way. If an item bearing the seal of a Licensed Professional Engineer is altered, the altering Engineer shall affix to the item his/her seal and notation "altered by" followed by his/her signature and the date of such alternation, and a specific description of the alteration.

Tables

8

Table 1 Battery Tunnel Water Quality Riverview Innovation Technology Campus, Inc. Town of Tonawanda, New York

		own of Tonaw	variua, ivev	TOIK						
Analytes	Class GA Ambient Water Quality Standards and Guidance Values	Units Sample Date	051	Y-TUNNEL- 82022 3/2022	05	ATTERY-TUNNEL- BATTERY-TUNNEL- B/ 05172022 06012022 5/17/2022 6/1/2022		BATTERY-TUNNEL- 06162022 6/16/2022		
									PEN	DING
TCL VOCs (SW8260C)										
1,1,1-Trichloroethane (TCA)	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,1,2,2-Tetrachloroethane	5	ug/l	<0.17	U	<2.00	U	<0.17	U		
1,1,2-Trichloroethane	1	ug/l	<0.50	U	<2.00	U	<0.50	U		
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon-113)	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,1-Dichloroethane	5	ug/l	<0.70	U	<2.00	U	<2.5	U		
1,1-Dichloroethene	5	ug/l	<0.17	U	<2.00	U	<0.17	U		
1,2,3-Trichlorobenzene	5	ug/l	<0.70	U	<5.00	U	<0.70	U		
1,2,4-Trichlorobenzene	5	ug/l	<0.70	U	<5.00	U	<0.70	U		
1,2-Dibromo-3-Chloropropane	0.04	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	ug/l	<0.65	U	<2.00	U	<0.65	U		
1,2-Dichlorobenzene	3	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,2-Dichloroethane	0.6	ug/l	<0.13	U	<2.00	U	<0.13	U		
1,2-Dichloropropane	1	ug/l	<0.14	U	<2.00	U	<0.14	U		
1,3-Dichlorobenzene	3	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,4-Dichlorobenzene	3	ug/l	<0.70	U	<2.00	U	<0.70	U		
1,4-Dioxane (P-Dioxane)	-	ug/l	<61.0	U	<10.0	U	<61.0	U		
Methyl Ethyl Ketone (2-Butanone)	50	ug/l	<1.9	U	<10.0	U	<1.9	U		
2-Hexanone	50	ug/l	<1.0	U	<5.00	U	<1.0	U		
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	-	ug/l	<1.0	U	<5.00	U	<1.0	U		
Acetone	50	ug/l	7.8		<10.0	U	21			
Benzene	1	ug/l	1.4		2.17		0.26	J		
Bromochloromethane	5	ug/l	<0.70	U	<5.00	U	<0.70	U		
Bromodichloromethane	50	ug/l	<0.19	U	<2.00	U	<0.19	U		
Bromoform	50	ug/l	<0.65	U	<5.00	U	<0.65	U		
Bromomethane	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Carbon Disulfide	-	ug/l	<1.0	U	<2.00	U	<1.0	U		
Carbon Tetrachloride	5	ug/l	<0.13	U	<2.00	U	<0.13	U		
Chlorobenzene	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Chloroethane	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Chloroform	7	ug/l	<0.70	U	<2.00	U	<0.70	U		
Chloromethane	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Cyclohexane	_	ug/l	<0.27	U	<10.0	U	<0.27	U		
Dibromochloromethane	50	ug/l	<0.15	U	<2.00	U	<0.15	U		
Dichlorodifluoromethane	5	ug/l	<1.0	U	<2.00	U	<1.0	U		
Methylene Chloride	5	ug/l	<0.70	U	<5.00	U	<0.70	U		
Ethylbenzene	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Isopropylbenzene (Cumene)	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Methyl Acetate		ug/l	<023	U	<2.00	U	<0.23	U		
Tert-Butyl Methyl Ether	_	ug/l	<0.70	U	<2.00	U	<0.70	U		
Methylcyclohexane	_	ug/l	<0.40	U	<2.00	U	<0.40	U		
Styrene	5	ug/l	<0.70	U	<5.00	U	<0.70	U		
Tetrachloroethylene (PCE)	5	ug/I	<0.18	U	<2.00	U	<0.70	U		
Toluene	5	ug/I ug/I	<0.18	U	<2.00	U	<0.18	U		
Trichloroethylene (TCE)	5	ug/I ug/I	<0.70	U	<2.00	U	<0.70	U		
Trichlorofluoromethane	5	ug/I ug/I	<0.18	U	<2.00	U	<0.18	U		
Vinyl Chloride	2	ug/I ug/I	<0.70	U	<2.00	U	<0.70	U		
Cis-1,2-Dichloroethylene	5	ug/I ug/I	<0.07	U	<2.00	U	<0.07	U		
Cis-1,3-Dichloropropene	0.4	ug/I	<0.70	U	<2.00	U	<0.70	U		
m,p-Xylene	5		<0.14	U	<2.00	U	<0.14	U		
m,p-xylene O-Xylene (1,2-Dimethylbenzene)	5	ug/l	<0.70	U	<2.00	U	<0.70	U		
Trans-1,2-Dichloroethene	5	ug/l		U				U		
		ug/l	<0.70	U	<2.00	U	<0.70	U		
Trans-1,3-Dichloropropene	0.4	ug/l	<0.16	U	<2.00	U	<0.16	U		
TCI \$\\OC_\((\sum_{\substack}(\sum_{\sub										
TCL SVOCs (SW8270D)	-	uc/1	×0.46	U	<0.C1	11	<0.C4			
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	5	-	<0.46 <0.44	U	<0.61	U	<0.64	U		
	5	ug/L				U				
2,3,4,6-Tetrachlorophenol	-	ug/L	<0.84	U	NS		<0.47	U		
2,4,5-Trichlorophenol	-	ug/L	<0.77	U	<0.37	U	<0.38	U		
2,4,6-Trichlorophenol	-	ug/L	<0.61	U	<0.48	U	<0.49	U		
2,4-Dichlorophenol	5	ug/L	<0.41	U	<0.51	U	<0.53	U		
2,4-Dimethylphenol	50	ug/L	<1.8	U	<1.0	U	<1.1	U		
2,4-Dinitrophenol	10	ug/L	<6.6	U	<3.4	U	<3.6	U		
2,4-Dinitrotoluene	5	ug/L	<1.2	U	<0.37	U	<0.38	U		
2,6-Dinitrotoluene	5	ug/L	<0.93	U	<0.35	U	<0.37	U		
2-Chloronaphthalene	10	ug/L	<0.02	U	0.52		<0.04	U		
2-Chlorophenol	-	ug/L	<0.48	U	<0.39	U	<0.40	U		

Table 1 Battery Tunnel Water Quality Riverview Innovation Technology Campus, Inc. Town of Tonawanda, New York

	Te	own of Tonaw	/anda, New	York						
Analytes	Class GA Ambient Water Quality Standards and Guidance Values	Units	051	/-TUNNEL- 82022	05	RY-TUNNEL- 172022	060	BATTERY-TUNNEL- 06012022		-TUNNEL- 52022
		Sample Date	5/18	3/2022	5/1	17/2022	6/1	/2022		/2022
		/1		1					PEN	DING
2-Methylphonel (O. Cresel)	-	ug/L	0.92	U	2.0 <1.0		0.14	U		
2-Methylphenol (O-Cresol) 2-Nitroaniline	5	ug/L	<0.49	U	<0.50	U	<1.1	U		
2-Nitrophenol		ug/L ug/L	<0.50 <10	U	<0.44	U	<0.52 <0.46	U		
3,3'-Dichlorobenzidine	5	ug/L ug/L	<1.6	U	<0.44	U	<0.46	U		
Cresols, M & P (3&4-Methylphenol)	-	ug/L	<0.48	U	<0.53	U	<0.55	U		
3-Nitroaniline	5	ug/L	<0.48	U	<0.55	U	<0.57	U		
4,6-Dinitro-2-Methylphenol	-	ug/L	<1.8	U	<5.2	U	<5.4	U		
4-Bromophenyl Phenyl Ether	-	ug/L	<0.38	U	<0.61	U	<0.63	U		
4-Chloro-3-Methylphenol	-	ug/L	NS		NS	-	NS			
4-Chloroaniline	5	ug/L	<1.1	U	<0.62	U	<0.65	U		
4-Chlorophenyl Phenyl Ether	-	ug/L	<0.49	U	<0.76	U	<0.80	U		
4-Nitroaniline	5	ug/L	<0.80	U	<0.56	U	<0.58	U		
4-Nitrophenol	-	ug/L	<0.67	U	<1.1	U	<1.1	U		
Acenaphthene	20	ug/L	0.27		<1.0	U	0.53			
Acenaphthylene	-	ug/L	0.36		0.90	J	0.19			
Acetophenone	-	ug/L	<0.53	U	1.4	J	<0.98	U		
Anthracene	50	ug/L	0.24		0.97	J	<0.04	U		
Atrazine	7.5	ug/L	<0.76	U	NS		<1.7	U		
Benzo(A)Anthracene	0.002	ug/L	0.37		3.2		0.36			
Benzaldehyde	-	ug/L	<0.53	U	NS		<0.90	U		
Benzo(A)Pyrene	-	ug/L	0.18		1.4	J	0.14			
Benzo(B)Fluoranthene	0.002	ug/L	0.49		3.4		0.40			
Benzo(G,H,I)Perylene	-	ug/L	0.18		1.3	J	NS			
Benzo(K)Fluoranthene	0.002	ug/L	0.12		1.1	J	0.13			
Biphenyl (Diphenyl)	5	ug/L	<0.46	U	<0.61	U	<2.0	U		
Bis(2-Chloroisopropyl) Ether	5	ug/L	<0.53	U	<1.7	U	<1.8	U		
Bis(2-Chloroethoxy) Methane	5	ug/L	<0.50	U	<1.4	U	<1.5	U		
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	1	ug/L	<0.50	U	<0.85	U	<0.88	U		
Bis(2-Ethylhexyl) Phthalate	50	ug/L	<1.5	U	<1.4	U	<1.5	U		
Benzyl Butyl Phthalate		ug/L	<1.2	U	<2.1 NS	U	<2.2 <1.3	U		
Caprolactam Carbazole	-	ug/L ug/L	<0.49	U	1.1	J	<0.76	U		
Chrysene	0.002	ug/L ug/L	0.47	U	4.2	J	0.47	U		
Di-N-Butyl Phthalate	50	ug/L ug/L	<0.39	U	<0.56	U	<0.58	U		
Di-N-Octylphthalate	50	ug/L	<1.3	U	<2.3	U	<2.4	U		
Dibenz(A,H)Anthracene	-	ug/L	0.08	J	0.45	J	0.05	J		
Dibenzofuran	-	ug/L	<0.50	U	1.1	1	<0.82	U		
Diethyl Phthalate	50	ug/L	<0.38	U	<4.1	U	<4.3	U		
Dimethyl Phthalate	50	ug/L	<1.8	U	<4.3	U	<4.4	U		
Fluoranthene	50	ug/L	0.78		5.9	-	1.0			
Fluorene	50	ug/L	0.40		<1.0	U	0.25			
Hexachlorobenzene	0.04	ug/L	<0.80	U	<0.66	U	<0.03	U		
Hexachlorobutadiene	0.5	ug/L	<0.05	U	<0.58	U	<0.04	U		
Hexachlorocyclopentadiene	5	ug/L	<0.69	U	<0.58	U	<0.61	U		
Hexachloroethane	5	ug/L	<0.80	U	<0.42	U	<0.03	U		
Indeno(1,2,3-C,D)Pyrene	0.002	ug/L	0.19		1.4	J	0.16			
Isophorone	50	ug/L	<1.2	U	<0.63	U	<0.66	U		
N-Nitrosodi-N-Propylamine	-	ug/L	<0.64	U	<0.74	U	<0.77	U		
N-Nitrosodiphenylamine	50	ug/L	<0.42	U	<0.62	U	NS			
Naphthalene	10	ug/L	7.4		11.0		0.31			
Nitrobenzene	0.4	ug/L	<0.77	U	<063	U	<0.66	U		
Pentachlorophenol	1	ug/L	<0.80	U	<1.9	U	0.38	J		
Phenanthrene	50	ug/L	0.87		4.1		0.45			
Phenol	1	ug/L	<0.57	U	<1.2	U	<1.3	U		
Pyrene	50	ug/L	0.54		4.0		0.71			
TAL Metals (SW6010)										
Aluminum	0.002	mg/L	1.92		8.72		0.235			
Antimony	0.003	mg/L	<0.007	U	<0.007	U	<0.007	U		
Arsenic	0.025	mg/L	0.007		0.041		0.003	J		
Barium	0.003	mg/L	0.033	11	0.110	11	0.038	11		
Beryllium Cadmium	0.003 0.005	mg/L	<0.001 0.052	U	<0.001 0.017	U	<0.001 0.003	J		
Calcium	0.005	mg/L mg/L	558		671		1080	J		
Chromium, Total	0.05	mg/L mg/L	0.005	J	0.140		0.004	J		
Cobalt	0.05	mg/L mg/L	0.005	J	0.140		0.004	J		
	0.2	mg/L mg/L	0.048	J	0.026		0.016	J		
Copper	0.2	ilig/L	0.004	J	0.100		0.000	J		

Table 1 Battery Tunnel Water Quality Riverview Innovation Technology Campus, Inc. Town of Tonawanda, New York

Analytos	Class GA Ambient Water Quality Standards and Guidance Values	Units	051	Y-TUNNEL- 82022	051	Y-TUNNEL- .72022	06	RY-TUNNEL- 012022	0616	-TUNNEL- 2022
		Sample Date	5/18	3/2022	5/1	7/2022	6/	1/2022		/2022
									PEN	DING
Iron	0.3	mg/L	7.66		31.7		1.78			
Lead	0.025	mg/L	0.010		0.257		0.010	J		
Magnesium	35	mg/L	108		65.1		126			
Manganese	0.3	mg/L	5.42		3.01		5.48			
Nickel	0.1	mg/L	0.495		0.234		0.108			
Potassium	-	mg/L	256		232		357			
Selenium	0.01	mg/L	0.004	J	0.013		<0.004	U		
Silver	0.05	mg/L	<0.003	U	<0.003	U	<0.003	U		
Sodium	20	mg/L	490		452		1130			
Thallium	0.0005	mg/L	0.009	J	0.008		0.015			
Vanadium	-	mg/L	0.008	J	0.018		<0.002	U		
Zinc	2	mg/L	3.86		1.79		0.413			
Mercury 7470										
Mercury	0.7	ug/L	0.11		0.00400		0.09			
Cyanide (SW9012B/ KELADA-01)										
Cyanide	0.20	mg/L	0.334		0.359		0.213			
PCBs (8082A)										
PCB-1016 (Aroclor 1016)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1221 (Aroclor 1221)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1232 (Aroclor 1232)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1242 (Aroclor 1242)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1248 (Aroclor 1248)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1254 (Aroclor 1254)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1260 (Aroclor 1260)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1260 (Aroclor 1262)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
PCB-1260 (Aroclor 1268)	0.09	ug/L	<0.061	U	<0.083	U	<0.013	U		
Ammonia (E350.1)										
Nitrogen, Ammonia (As N)	2	mg/L	62.2		78.9		165			
Asbestos										
Asbestos (million fibers per liter)	-	MFL	<49.00	U	<92.0	U	<4.90	U		
Notes:										
NS = Not Sampled										
NC = Not Calculable										
NA = Sample collected, but not analyzed										
"<" = Analyzed for but detected at or above the quantitation lir	nit									
J = Analyte detected below quantitation limit	-									
C = Continuing Calibration Verification (CCV) below acceptable	limits									
S: Lab Control Sample (LCS) Spike recovery is below acceptable										
Bold = Analyte was detected	-									
,										
			1		1					

Table 2 Analytical Data Battery Brick and Refractory Rivverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units		MULTI- 22022		K-RED- 22022	BRICK-YELV	N-03222022	BRICK-GRAY-03222022	
<u>Contents</u>			Refract	ory Brick	Red	Brick	Yellov	w Brick	Grey	Brick
Location			Bat	tery	Ba	ttery	Bat	ttery	Ba	ttery
				•	<u> 1</u>	-	<u> </u>	•		•
<u>SW8260C</u>										
1,1,1-Trichloroethane (TCA)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,1,2,2-Tetrachloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,1,2-Trichloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	<8.33	U	<9.62 <9.62	U	<5.71 <5.71	U	<8.00	U
1,1-Dichloroethane 1,1-Dichloroethene		ug/kg	<8.33 <8.33	U	<9.62	U	<5.71	U	<8.00 <8.00	U
1,2,3-Trichlorobenzene		ug/kg ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
1,2,4-Trichlorobenzene		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
1,2-Dibromo-3-Chloropropane		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U
1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,2-Dichlorobenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,2-Dichloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,2-Dichloropropane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,3-Dichlorobenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,4-Dichlorobenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
1,4-Dioxane (P-Dioxane)		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U
Methyl Ethyl Ketone (2-Butanone)		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U
2-Hexanone		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Acetone		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U
Benzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Bromochloromethane		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Bromodichloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Bromoform		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Bromomethane		ug/kg	<8.33	U	<9.62 <9.62	U	<5.71 <5.71	U	<8.00 <8.00	U
Carbon Disulfide Carbon Tetrachloride		ug/kg	<8.33 <8.33	U	<9.62	U	<5.71	U	<8.00	U
Chlorobenzene		ug/kg ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Chloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Chloroform		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Chloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Cyclohexane		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U
Dibromochloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Dichlorodifluoromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Methylene Chloride		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Ethylbenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Isopropylbenzene (Cumene)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Methyl Acetate		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Tert-Butyl Methyl Ether		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Methylcyclohexane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Styrene		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U
Tetrachloroethylene (PCE)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Toluene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Trichloroethylene (TCE) Trichlorofluoromethane		ug/kg	<8.33	U	<9.62 <9.62	U	<5.71 <5.71	U	<8.00 <8.00	U
Vinyl Chloride		ug/kg ug/kg	<8.33 <8.33	U	<9.62	U	<5.71 <5.71	U	<8.00 <8.00	U
Cis-1,2-Dichloroethylene		ug/kg ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Cis-1,3-Dichloropropene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
m,p-Xylene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
O-Xylene (1,2-Dimethylbenzene)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Trans-1,2-Dichloroethene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
Trans-1,3-Dichloropropene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U
				i						

Table 1 Analytical Data Battery Brick and Refractory Rivverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units	BRICK- 0322	MULTI- 2022		(-RED- 22022	BRICK-YELV	V-03222022	BRICK-GRA	Y-03222022
Contents			Refracto	ry Brick	Red	Brick	Yellov	v Brick	Grey	Brick
Location				tery		tery	Bat	tery	-	tery
							l		L	
<u>SW8270D</u>					,					
1,2,4,5-Tetrachlorobenzene		ug/kg	<284	U	<278	U	<269	U	<284	U
2,3,4,6-Tetrachlorophenol		ug/kg	<284	U	<278 <278	U	<269	U	<284	U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		ug/kg ug/kg	<284 <284	U	<278	U	<269 <269	U	<284 <284	U
2,4-Dichlorophenol		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U
2,4-Dimethylphenol		ug/kg	<284	U	<278	U	<269	U	<284	U
2,4-Dinitrophenol		ug/kg	<1140	U	<1110	U	<1080	U	<1140	U
2,4-Dinitrotoluene		ug/kg	<284	U	<278	U	<269	U	<284	U
2,6-Dinitrotoluene		ug/kg	<284	U	<278	U	<269	U	<284	U
2-Chloronaphthalene		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
2-Chlorophenol 2-Methylnaphthalene		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U
2-Methylphenol (O-Cresol)		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U
2-Nitroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U
2-Nitrophenol		ug/kg	<284	U	<278	U	<269	U	<284	U
3,3'-Dichlorobenzidine		ug/kg	<284	U	<278	U	<269	U	<284	U
Cresols, M & P		ug/kg	<284	U	<278	U	<269	U	<284	U
3-Nitroaniline 4,6-Dinitro-2-Methylphenol		ug/kg	<284 <380	U	<278 <372	U	<269 <360	U	<284 <380	U
4,6-Dinitro-2-Methylphenol 4-Bromophenyl Phenyl Ether		ug/kg ug/kg	<380 <284	U	<372	U	<269	U	<380 <284	U
4-Chloro-3-Methylphenol		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U
4-Chloroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U
4-Chlorophenyl Phenyl Ether		ug/kg	<284	U	<278	U	<269	U	<284	U
4-Nitroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U
4-Nitrophenol		ug/kg	<284	U	<278	U	<269	U	<284	U
Acenaphthene		ug/kg	<284	U	<278	U	<269	U	<284	U
Acetophenone		ug/kg ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
Anthracene		ug/kg	<284	U	<278	U	<269	U	<284	U
Atrazine		ug/kg	<284	U	<278	U	<269	U	<284	U
Benzo(A)Anthracene		ug/kg	<284	U	<278	U	<269	U	<284	U
Benzaldehyde		ug/kg	<284	U	<278	U	<269	U	<284	U
Benzo(A)Pyrene		ug/kg	<284	U	<278	U	<269	U	<284	U
Benzo(B)Fluoranthene		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
Benzo(G,H,I)Perylene Benzo(K)Fluoranthene		ug/kg ug/kg	<284 <284	U	<278	U	<269	U	<284	U
Biphenyl (Diphenyl)		ug/kg	<284	U	<278	U	<269	U	<284	U
Bis(2-Chloroisopropyl) Ether		ug/kg	<284	U	<278	U	<269	U	<284	U
Bis(2-Chloroethoxy) Methane		ug/kg	<284	U	<278	U	<269	U	<284	U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	<284	U	<278	U	<269	U	<284	U
Bis(2-Ethylhexyl) Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U
Benzyl Butyl Phthalate Caprolactam		ug/kg ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
Carbazole		ug/kg ug/kg	<284 <284	U	<278	U	<269	U	<284	U
Chrysene		ug/kg	<284	U	301	-	<269	U	<284	U
Di-N-Butyl Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U
Di-N-Octylphthalate		ug/kg	<284	U	<278	U	<269	U	<284	U
Dibenz(A,H)Anthracene		ug/kg	<284	U	<278	U	<269	U	<284	U
Dibenzofuran		ug/kg	<284	U	<278	U	<269	U	<284	U
Diethyl Phthalate Dimethyl Phthalate		ug/kg ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
Fluoranthene		ug/kg ug/kg	<284	U	499	ľ	<269	U	<284	U
Fluorene		ug/kg	<284	U	<278	U	<269	U	<284	U
Hexachlorobenzene		ug/kg	<284	U	<278	U	<269	U	<284	U
Hexachlorobutadiene		ug/kg	<284	U	<278	U	<269	U	<284	U
Hexachlorocyclopentadiene		ug/kg	<1140	U	<1110	U	<1080	U	<1140	U
Hexachloroethane		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U
Indeno(1,2,3-C,D)Pyrene Isophorone		ug/kg ug/kg	<284 <284	U	<278	U	<269	U	<284 <284	U
N-Nitrosodi-N-Propylamine		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U
N-Nitrosodiphenylamine		ug/kg	<284	U	<278	U	<269	U	<284	U
Naphthalene		ug/kg	<284	U	<278	U	<269	U	<284	U
Nitrobenzene		ug/kg	<284	U	<278	U	<269	U	<284	U
Pentachlorophenol		ug/kg	<568	U	<556	U	<538	U	<568	U
Phenanthrene Phenol		ug/kg	<284 <284	U	431 <278	U	<269 <269	U	<284 <284	U
FIIEIIOI		ug/kg			-					-
Pyrene		ug/kg	<284	U	<278	U	<269	U	<284	U

Table 1 Analytical Data Battery Brick and Refractory Rivverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units		MULTI- 2022		K-RED- 22022	BRICK-YELW-03222022		BRICK-GRA	NY-03222022	
Contents			Refract	ory Brick	Red	Brick	Yellov	w Brick	Grey	/ Brick	
Location			Bat	tery	Ba	ttery	Bat	ttery	Ba	Battery	
					1		l.				
TCLP - SW8260C											
1,2-Dichloroethane		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Chlorobenzene	100000	ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Tetrachloroethylene (PCE)		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Carbon Tetrachloride		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Chloroform	6000		<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Benzene		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Vinyl Chloride		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
1,1-Dichloroethene		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Methyl Ethyl Ketone (2-Butanone)	200000		<100	U	<100	U	<100	U	<100	U	
Trichloroethylene (TCE)	500	ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
								<u> </u>			
TCLP - SW8270D	7500	1 . //	40.0	I	1	I		L.		L	
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	400000	ug/L	<40.0 <40.0	U	<40.0 <40.0	U	<40.0 <40.0	U	<40.0 <40.0	U	
	-	ug/L ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	II.	
2,4,6-Trichlorophenol 2,4-Dinitrotoluene		ug/L ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Cresols (as m,p,o-Cresol)	200000	-	<80.0	U	<80.0	U	<80.0	U	<80.0	U	
Hexachlorobenzene		ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Hexachlorobutadiene		ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Hexachloroethane	+	ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Nitrobenzene	_	ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Pentachlorophenol	100000		<80.0	U	<80.0	U	<80.0	U	<80.0	U	
Pyridine		ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
		, , , , , , , , , , , , , , , , , , ,									
Legend:											
Bold	Detected										
U	Not detecte	ed above met	thod detection	on limit							
ND	Non detect										
NS	Not sample										
SU	Standard ur										
PPM	· ·	Parts per million									
mg/l		Miligrams per liter									
ug/l	Micrograms per liter Sample or matrix spike duplicate results above relative prercent difference limit										
D	<u> </u>						e limit				
L					pted QC limi				-		
M	Matrix spik	e recoveries	outside QC li	mits. Matrix	bias indicate	ed	1				
					1		1				

Attachment A – Laboratory Reports – Exhaust Tunnel Water

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

222327

Referencing

Battery Tunnel *Prepared*

Thursday, June 2, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Lab Project ID: 222327

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Tunnel

Sample Identifier: Battery-Tunnel-05172022

Lab Sample ID: 222327-01 **Date Sampled:** 5/17/2022 14:30

Matrix: Water Date Received 5/19/2022

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L	5/24/2022 15:43	3
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/24/2022 15:43	3
1,1,2-Trichloroethane	< 2.00	ug/L	5/24/2022 15:43	3
1,1-Dichloroethane	< 2.00	ug/L	5/24/2022 15:43	3
1,1-Dichloroethene	< 2.00	ug/L	5/24/2022 15:43	3
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/24/2022 15:43	3
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/24/2022 15:43	3
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/24/2022 15:43	3
1,2-Dibromoethane	< 2.00	ug/L	5/24/2022 15:43	3
1,2-Dichlorobenzene	< 2.00	ug/L	5/24/2022 15:43	3
1,2-Dichloroethane	< 2.00	ug/L	5/24/2022 15:43	3
1,2-Dichloropropane	< 2.00	ug/L	5/24/2022 15:43	3
1,3-Dichlorobenzene	< 2.00	ug/L	5/24/2022 15:43	3
1,4-Dichlorobenzene	< 2.00	ug/L	5/24/2022 15:43	3
1,4-Dioxane	< 10.0	ug/L	5/24/2022 15:43	3
2-Butanone	< 10.0	ug/L	5/24/2022 15:43	3
2-Hexanone	< 5.00	ug/L	5/24/2022 15:43	3
4-Methyl-2-pentanone	< 5.00	ug/L	5/24/2022 15:43	3
Acetone	< 10.0	ug/L	5/24/2022 15:43	3
Benzene	2.17	ug/L	5/24/2022 15:43	3
Bromochloromethane	< 5.00	ug/L	5/24/2022 15:43	3
Bromodichloromethane	< 2.00	ug/L	5/24/2022 15:43	3
Bromoform	< 5.00	ug/L	5/24/2022 15:43	3
Bromomethane	< 2.00	ug/L	5/24/2022 15:43	3
Carbon disulfide	< 2.00	ug/L	5/24/2022 15:43	3
Carbon Tetrachloride	< 2.00	ug/L	5/24/2022 15:43	3
Chlorobenzene	< 2.00	ug/L	5/24/2022 15:43	3
Chloroethane	< 2.00	ug/L	5/24/2022 15:43	3

Lab Project ID: 222327

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Tunnel

Sample Identifier: Battery-Tunnel-05172022

Lab Sample ID: 222327-01 **Date Sampled:** 5/17/2022 14:30

Matrix: Water Date Received 5/19/2022

Chloroform	< 2.00	ug/L	5/24/2022	15:43
Chloromethane	< 2.00	ug/L	5/24/2022	15:43
cis-1,2-Dichloroethene	< 2.00	ug/L	5/24/2022	15:43
cis-1,3-Dichloropropene	< 2.00	ug/L	5/24/2022	15:43
Cyclohexane	< 10.0	ug/L	5/24/2022	15:43
Dibromochloromethane	< 2.00	ug/L	5/24/2022	15:43
Dichlorodifluoromethane	< 2.00	ug/L	5/24/2022	15:43
Ethylbenzene	< 2.00	ug/L	5/24/2022	15:43
Freon 113	< 2.00	ug/L	5/24/2022	15:43
Isopropylbenzene	< 2.00	ug/L	5/24/2022	15:43
m,p-Xylene	< 2.00	ug/L	5/24/2022	15:43
Methyl acetate	< 2.00	ug/L	5/24/2022	15:43
Methyl tert-butyl Ether	< 2.00	ug/L	5/24/2022	15:43
Methylcyclohexane	< 2.00	ug/L	5/24/2022	15:43
Methylene chloride	< 5.00	ug/L	5/24/2022	15:43
o-Xylene	< 2.00	ug/L	5/24/2022	15:43
Styrene	< 5.00	ug/L	5/24/2022	15:43
Tetrachloroethene	< 2.00	ug/L	5/24/2022	15:43
Toluene	< 2.00	ug/L	5/24/2022	15:43
trans-1,2-Dichloroethene	< 2.00	ug/L	5/24/2022	15:43
trans-1,3-Dichloropropene	< 2.00	ug/L	5/24/2022	15:43
Trichloroethene	< 2.00	ug/L	5/24/2022	15:43
Trichlorofluoromethane	< 2.00	ug/L	5/24/2022	15:43
Vinyl chloride	< 2.00	ug/L	5/24/2022	15:43

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Lab Project ID: 222327

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Tunnel

Sample Identifier: Battery-Tunnel-05172022

Lab Sample ID: 222327-01 **Date Sampled:** 5/17/2022 14:30

Matrix: Water Date Received 5/19/2022

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4	79.2	81.1 - 136	*	5/24/2022	15:43
4-Bromofluorobenzene	87.3	75.8 - 132		5/24/2022	15:43
Pentafluorobenzene	109	82 - 132		5/24/2022	15:43
Toluene-D8	102	64.6 - 137		5/24/2022	15:43

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z09429.D

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Tunnel

Lab Project ID:

222327

Matrix:

Water

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<2.00	ug/L		5/24/2022	14:57
1,1,2,2-Tetrachloroethane	<2.00	ug/L		5/24/2022	14:57
1,1,2-Trichloroethane	<2.00	ug/L		5/24/2022	14:57
1,1-Dichloroethane	<2.00	ug/L		5/24/2022	14:57
1,1-Dichloroethene	<2.00	ug/L		5/24/2022	14:57
1,2,3-Trichlorobenzene	<5.00	ug/L		5/24/2022	14:57
1,2,4-Trichlorobenzene	<5.00	ug/L		5/24/2022	14:57
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		5/24/2022	14:57
1,2-Dibromoethane	<2.00	ug/L		5/24/2022	14:57
1,2-Dichlorobenzene	<2.00	ug/L		5/24/2022	14:57
1,2-Dichloroethane	<2.00	ug/L		5/24/2022	14:57
1,2-Dichloropropane	<2.00	ug/L		5/24/2022	14:57
1,3-Dichlorobenzene	<2.00	ug/L		5/24/2022	14:57
1,4-Dichlorobenzene	<2.00	ug/L		5/24/2022	14:57
1,4-Dioxane	<10.0	ug/L		5/24/2022	14:57
2-Butanone	<10.0	ug/L		5/24/2022	14:57
2-Hexanone	<5.00	ug/L		5/24/2022	14:57
4-Methyl-2-pentanone	<5.00	ug/L		5/24/2022	14:57
Acetone	<10.0	ug/L		5/24/2022	14:57
Benzene	<1.00	ug/L		5/24/2022	14:57
Bromochloromethane	<5.00	ug/L		5/24/2022	14:57
Bromodichloromethane	<2.00	ug/L		5/24/2022	14:57
Bromoform	<5.00	ug/L		5/24/2022	14:57
Bromomethane	<2.00	ug/L		5/24/2022	14:57
Carbon disulfide	<2.00	ug/L		5/24/2022	14:57
Carbon Tetrachloride	<2.00	ug/L		5/24/2022	14:57
Chlorobenzene	<2.00	ug/L		5/24/2022	14:57
		-67 —		-,, 	

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Tunnel

Lab Project ID:

222327

Matrix:

Water

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/L		5/24/2022	14:57
Chloroform	<2.00	ug/L		5/24/2022	14:57
Chloromethane	<2.00	ug/L		5/24/2022	14:57
cis-1,2-Dichloroethene	<2.00	ug/L		5/24/2022	14:57
cis-1,3-Dichloropropene	<2.00	ug/L		5/24/2022	14:57
Cyclohexane	<10.0	ug/L		5/24/2022	14:57
Dibromochloromethane	<2.00	ug/L		5/24/2022	14:57
Dichlorodifluoromethane	<2.00	ug/L		5/24/2022	14:57
Ethylbenzene	<2.00	ug/L		5/24/2022	14:57
Freon 113	<2.00	ug/L		5/24/2022	14:57
Isopropylbenzene	<2.00	ug/L		5/24/2022	14:57
m,p-Xylene	<2.00	ug/L		5/24/2022	14:57
Methyl acetate	<2.00	ug/L		5/24/2022	14:57
Methyl tert-butyl Ether	<2.00	ug/L		5/24/2022	14:57
Methylcyclohexane	<2.00	ug/L		5/24/2022	14:57
Methylene chloride	<5.00	ug/L		5/24/2022	14:57
o-Xylene	<2.00	ug/L		5/24/2022	14:57
Styrene	<5.00	ug/L		5/24/2022	14:57
Tetrachloroethene	<2.00	ug/L		5/24/2022	14:57
Toluene	<2.00	ug/L		5/24/2022	14:57
trans-1,2-Dichloroethene	<2.00	ug/L		5/24/2022	14:57
trans-1,3-Dichloropropene	<2.00	ug/L		5/24/2022	14:57
Trichloroethene	<2.00	ug/L		5/24/2022	14:57
Trichlorofluoromethane	<2.00	ug/L		5/24/2022	14:57
Vinyl chloride	<2.00	ug/L		5/24/2022	14:57

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Tunnel

Lab Project ID:

222327

Matrix:

Water

Volatile Organics

<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	Outliers	Date Anal	yzed
1,2-Dichloroethane-d4		99.7	81.1 - 136		5/24/2022	14:57
4-Bromofluorobenzene		99.5	75.8 - 132		5/24/2022	14:57
Pentafluorobenzene		103	82 - 132		5/24/2022	14:57
Toluene-D8		106	64.6 - 137		5/24/2022	14:57
Method Reference(s):	EPA 8260C					
	EPA 5030C					
Data File:	z09427.D					
QC Batch ID:	voaw220524					
QC Number:	Blk 1					

QC Report for Laboratory Control Sample

Inventum Engineering, P.C.

Client:

Project Reference: Battery Tunnel

Lab Project ID: 222327

Water

Matrix:

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	<u>Outliers</u>	<u>Analyzed</u>
1,1,1-Trichloroethane	20.0	ug/L	18.9	94.4	80 - 132		5/24/2022
1,1,2,2-Tetrachloroethane	20.0	ug/L	16.3	81.5	23.6 - 185		5/24/2022
1,1,2-Trichloroethane	20.0	ug/L	15.6	78.2	62.9 - 138		5/24/2022
1,1-Dichloroethane	20.0	ug/L	17.9	89.3	79.7 - 124		5/24/2022
1,1-Dichloroethene	20.0	ug/L	18.8	94.0	65.5 - 116		5/24/2022
1,2-Dichlorobenzene	20.0	ug/L	18.6	93.0	59 - 126		5/24/2022
1,2-Dichloroethane	20.0	ug/L	16.7	83.4	78.3 - 122		5/24/2022
1,2-Dichloropropane	20.0	ug/L	17.9	89.4	75.9 - 115		5/24/2022
1,3-Dichlorobenzene	20.0	ug/L	19.1	95.3	66.4 - 109		5/24/2022
1,4-Dichlorobenzene	20.0	ug/L	18.6	92.9	66.4 - 110		5/24/2022
Benzene	20.0	ug/L	18.6	92.8	81.6 - 114		5/24/2022
Bromodichloromethane	20.0	ug/L	17.2	85.9	77.8 - 116		5/24/2022
Bromoform	20.0	ug/L	14.9	74.3	47.9 - 153		5/24/2022
Bromomethane	20.0	ug/L	18.1	90.5	50.9 - 166		5/24/2022
Carbon Tetrachloride	20.0	ug/L	19.0	94.9	76.4 - 129		5/24/2022
Chlorobenzene	20.0	ug/L	19.7	98.6	77.2 - 106		5/24/2022
This report is part of a multipage document and should only be explicated in its antimate. The Obein of Co.	raluated in ite	ntination Tha Ch					

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample

Inventum Engineering, P.C.

Client:

Project Reference: Battery Tunnel

Lab Project ID: 222327

Water

Matrix:

Volatile Organics

Vinyl chloride	Trichlorofluoromethane	Trichloroethene	trans-1,3-Dichloropropene	trans-1,2-Dichloroethene	Toluene	Tetrachloroethene	Methylene chloride	Ethylbenzene	Dibromochloromethane	cis-1,3-Dichloropropene	Chloromethane	Chloroform	Chloroethane		<u>Analyte</u>	
			ne	е												
20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		Added	<u>Spike</u>
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		Units	<u>Spike</u>
20.5	19.7	18.9	15.6	18.7	19.0	18.5	18.8	19.6	15.8	16.3	19.1	17.9	21.3		Result	LCS
103	98.4	94.6	78.2	93.7	94.9	92.4	94.0	98.2	78.8	81.3	95.5	89.3	106		Recovery	LCS %
50.9 - 164	62.2 - 147	73.4 = 122	57.1 • 131	73.9 - 120	62.9 = 125	64.4 - 130	52.5 - 139	72.1 • 110	65.7 - 133	68.8 - 122	42.2 - 174	84.5 - 122	49.9 - 159		Limits	% Rec
															<u>Outliers</u>	LCS
5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	,	<u>Analyzed</u>	Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample

Inventum Engineering, P.C.

Client:

Project Reference: Lab Project ID: 222327 **Battery Tunnel**

Water

Matrix:

Volatile Organics

Analyte

Data File: QC Number: QC Batch ID:

voaw220524 LCS 1 z09426.D EPA 5030C EPA 8260C

Method Reference(s):

<u>Spike</u> <u>Spike</u> LCS LCS % % Rec

Added

Units

Result

Recovery

Limits

LCS

Outliers

Date

<u>Analyzed</u>

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

					8	5/17/22 14	DATE COLLECTED COLL		BATTERY TUNNEL	PROJECT REFERENCE				TARADIGM	
_						1430			INEC	FERENC	1			J G M	
_				-		Х	m ∨ O 1 ≤ O C			m					
						BATTERY-TUNNEL-05172027	SAMPLE IDENTIFIER		hind	BIXANNE BIEN	S85-734-5255	HERNOON VA STATE: 2017O	APPRESS: CAPUSLE DR SUTEC	WENTUM ENGINEERING	NET UNCHER
						WA 8 VV	X-N-DE WMDOO TO NMBECK WNMK-D-1200 TCL 8260 TCL 8270	REC	idwater	JOHN BLACK	PHONE:	CITY:	ADDRESS:	SAME	
						7 7 7 7 7 7 4	TAL METAL 6010C MERC 747D CY 9012B PCBS 8082A— AMMONIA- 35D. ASBESTOS	DESTED ANALYS	DW - Drinking Water WW - Wastewater	8		STATE:			'AL BRIDANI
	la	2 5 62	The Assert	Q.	*HX			SIS	SO - Soil SL - Sludge			ZIP:			
	401/15 - except 1004		that is achieved the	of possible that who days	*Have been informed		REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk	John black @ " "	Email:	Quotation #:	222327	LAB PROJECT ID	
	1/2		747	todays	1	0	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air		en-t-mermon			₽	

11/2

See additional page for sample conditions.	See additional pag				
1					1
everse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	please indicate EDD needed:	please indicate package needed:		please indicate date needed:
	5. Cicol 2/18/15 16:10	Other EDD	Other		Date Needed
	11318aNasa				Rush 1 day
9			Category B		Rush 2 day
	Received By 2000 2000 517/22 16:00	NYSDEC EDD X	Category A		Rush 3 day
	` [Basic EDD	Batch QC		10 day
Total Cost:	Sampled By Date/Time	None Required	None Required	B	Standard 5 day
	BOXANNE SIEX 5/17/22 1430	ees may apply.	Availability contingent upon lab approval; additional fees may apply.	vailability contingen	A
		lements	Report Supplements	Turnaround Time	Turna

Page 13 of 64

21/2

Chain of Custody Supplement

Client:		Inventum	Completed by:	Molepail
Lab Project II	D:	222327	Date:	5/19/22
1			tion Requirements 210/241/242/243/244	
Condition		NELAC compliance with the samp Yes	le condition requirements i No	upon receipt N/A
Container Type				
	Comments			-
Transferred to me compliant contain				
Headspace (<1 mL)	Comments	VOA		
Preservation	Comments	UOA)		
Chlorine Absent <0.10 ppm per t				LVO.A
Holding Time	Comments	JOA		
emperature	Comments	VOA 5°Ciul		
ompliant Sampl		-	CB, Ammonia, Asl	pestas sentelint to

ANALYTICAL REPORT

Lab Number: L2226133

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: BATTERY TUNNEL
Project Number: BATTERY TUNNEL

Report Date: 05/25/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05252212:35

Report Date: Lab Number:

05/25/22 L2226133

Project Number: Project Name: BATTERY TUNNEL

BATTERY TUNNEL

Alpha Sample ID

Client ID

L2226133-01

Matrix Sample Location Collection Date/Time

BATTERY-TUNNEL-05172022 WATER Not Specified 05/17/22 14:30 05/17/22

Receive Date

Project Name:BATTERY TUNNELLab Number:L2226133Project Number:BATTERY TUNNELReport Date:05/25/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:BATTERY TUNNELLab Number:L2226133Project Number:BATTERY TUNNELReport Date:05/25/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

The WG1641207-2/-3 LCS/LCSD recoveries, associated with L2226133-01, are below the acceptance criteria for benzoic acid (3%/6%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Total Metals

The WG1641852-3 MS recovery, performed on L2226133-01, is outside the acceptance criteria for zinc (74%). A post digestion spike was performed and yielded an unacceptable recovery for zinc (72%). The serial dilution recovery was acceptable; therefore, the matrix test passed for the sample matrix.

The WG1641852-3 MS recoveries for calcium (0%), iron (0%), magnesium (52%), manganese (68%), potassium (10%) and sodium (0%), performed on L2226133-01, do not apply because the sample

concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Page 18 of 64

Date: 05/25/22

ORGANICS

SEMIVOLATILES

Serial_No:05252212:35

Project Name: BATTERY TUNNEL **Lab Number:** L2226133

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01 Date Collected: 05/17/22 14:30

Client ID: BATTERY-TUNNEL-05172022 Date Received: 05/17/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/21/22 08:10

Analytical Method: 1,8270D Extraction Date: 05/21/22 08:10
Analytical Date: 05/22/22 12:36

Analyst: CMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/l	1.9	1.0	1	
1,2,4-Trichlorobenzene	ND		ug/l	4.8	0.56	1	
Hexachlorobenzene	ND		ug/l	1.9	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	1.9	0.85	1	
2-Chloronaphthalene	ND		ug/l	1.9	0.52	1	
1,2-Dichlorobenzene	ND		ug/l	1.9	0.61	1	
1,3-Dichlorobenzene	ND		ug/l	1.9	0.62	1	
1,4-Dichlorobenzene	ND		ug/l	1.9	0.44	1	
3,3'-Dichlorobenzidine	ND		ug/l	4.8	0.82	1	
2,4-Dinitrotoluene	ND		ug/l	4.8	0.37	1	
2,6-Dinitrotoluene	ND		ug/l	4.8	0.35	1	
Fluoranthene	5.9		ug/l	1.9	0.63	1	
4-Chlorophenyl phenyl ether	ND		ug/l	1.9	0.76	1	
4-Bromophenyl phenyl ether	ND		ug/l	1.9	0.61	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	1.9	1.7	1	
Bis(2-chloroethoxy)methane	ND		ug/l	4.8	1.4	1	
Hexachlorobutadiene	ND		ug/l	1.9	0.58	1	
Hexachlorocyclopentadiene	ND		ug/l	19	0.58	1	
Hexachloroethane	ND		ug/l	1.9	0.42	1	
Isophorone	ND		ug/l	4.8	0.63	1	
Naphthalene	11.		ug/l	1.9	0.64	1	
Nitrobenzene	ND		ug/l	1.9	0.63	1	
NDPA/DPA	ND		ug/l	1.9	0.62	1	
n-Nitrosodi-n-propylamine	ND		ug/l	4.8	0.74	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.9	1.4	1	
Butyl benzyl phthalate	ND		ug/l	4.8	2.1	1	
Di-n-butylphthalate	ND		ug/l	4.8	0.56	1	
Di-n-octylphthalate	ND		ug/l	4.8	2.3	1	

Page 7 of 47 Page 21 of 64

Serial_No:05252212:35

Project Name: BATTERY TUNNEL **Lab Number:** L2226133

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01 Date Collected: 05/17/22 14:30

Client ID: BATTERY-TUNNEL-05172022 Date Received: 05/17/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Disthet white state	ND			4.0	4.4	_
Diethyl phthalate	ND		ug/l	4.8	4.1	1
Dimethyl phthalate	ND		ug/l	4.8	4.3	1
Benzo(a)anthracene	3.2		ug/l	1.9	0.74	1
Benzo(a)pyrene	1.4	J	ug/l	1.9	0.43	1
Benzo(b)fluoranthene	3.4		ug/l	1.9	0.78	<u> </u>
Benzo(k)fluoranthene	1.1	J	ug/l	1.9	0.78	1
Chrysene	4.2		ug/l	1.9	0.80	1
Acenaphthylene	0.90	J	ug/l	1.9	0.57	<u> </u>
Anthracene	0.97	J	ug/l	1.9	0.76	1
Benzo(ghi)perylene	1.3	J	ug/l	1.9	0.74	1
Fluorene	ND		ug/l	1.9	1.0	1
Phenanthrene	4.1		ug/l	1.9	0.95	1
Dibenzo(a,h)anthracene	0.45	J	ug/l	1.9	0.43	1
Indeno(1,2,3-cd)pyrene	1.4	J	ug/l	1.9	0.91	1
Pyrene	4.0		ug/l	1.9	0.68	1
Biphenyl	ND		ug/l	1.9	0.61	1
4-Chloroaniline	ND		ug/l	4.8	0.62	1
2-Nitroaniline	ND		ug/l	4.8	0.50	1
3-Nitroaniline	ND		ug/l	4.8	0.55	1
4-Nitroaniline	ND		ug/l	4.8	0.56	1
Dibenzofuran	1.1	J	ug/l	1.9	0.79	1
2-Methylnaphthalene	2.0		ug/l	1.9	0.65	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	9.6	0.60	1
Acetophenone	1.4	J	ug/l	4.8	0.94	1
2,4,6-Trichlorophenol	ND		ug/l	4.8	0.48	1
p-Chloro-m-cresol	ND		ug/l	1.9	0.39	1
2-Chlorophenol	ND		ug/l	1.9	0.39	1
2,4-Dichlorophenol	ND		ug/l	4.8	0.51	1
2,4-Dimethylphenol	ND		ug/l	4.8	1.0	1
2-Nitrophenol	ND		ug/l	9.6	0.44	1
4-Nitrophenol	ND		ug/l	9.6	1.1	1
2,4-Dinitrophenol	ND		ug/l	19	3.4	1
4,6-Dinitro-o-cresol	ND		ug/l	9.6	5.2	1
Pentachlorophenol	ND		ug/l	9.6	1.9	1
Phenol	ND		ug/l	4.8	1.2	1
2-Methylphenol	ND		ug/l	4.8	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	4.8	0.53	1

Page 8 of 47

Serial_No:05252212:35

Project Name: BATTERY TUNNEL Lab Number: L2226133

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01 Date Collected: 05/17/22 14:30

Client ID: BATTERY-TUNNEL-05172022 Date Received: 05/17/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/l	4.8	0.37	1
Benzoic Acid	ND		ug/l	48	12.	1
Benzyl Alcohol	ND		ug/l	1.9	0.67	1
Carbazole	1.1	J	ua/l	1.9	0.73	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	58	41-149

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/22/22 08:58

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 05/21/22 08:10

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for sample(s): 01 Batch:	WG1641207-1
Acenaphthene	ND	ug/l	2.0	1.1
1,2,4-Trichlorobenzene	ND	ug/l	5.0	0.58
Hexachlorobenzene	ND	ug/l	2.0	0.69
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.88
2-Chloronaphthalene	ND	ug/l	2.0	0.54
1,2-Dichlorobenzene	ND	ug/l	2.0	0.64
1,3-Dichlorobenzene	ND	ug/l	2.0	0.64
1,4-Dichlorobenzene	ND	ug/l	2.0	0.46
3,3'-Dichlorobenzidine	ND	ug/l	5.0	0.85
2,4-Dinitrotoluene	ND	ug/l	5.0	0.38
2,6-Dinitrotoluene	ND	ug/l	5.0	0.37
Fluoranthene	ND	ug/l	2.0	0.65
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.80
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.63
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	1.8
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	1.5
Hexachlorobutadiene	ND	ug/l	2.0	0.60
Hexachlorocyclopentadiene	ND	ug/l	20	0.61
Hexachloroethane	ND	ug/l	2.0	0.44
Isophorone	ND	ug/l	5.0	0.66
Naphthalene	ND	ug/l	2.0	0.67
Nitrobenzene	ND	ug/l	2.0	0.66
NDPA/DPA	ND	ug/l	2.0	0.65
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.77
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.5
Butyl benzyl phthalate	ND	ug/l	5.0	2.2
Di-n-butylphthalate	ND	ug/l	5.0	0.58
Di-n-octylphthalate	ND	ug/l	5.0	2.4
Diethyl phthalate	ND	ug/l	5.0	4.3

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/22/22 08:58

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 05/21/22 08:10

arameter	Result	Qualifier Unit	s R	L MDL	
emivolatile Organics by GC/N	/IS - Westborough	n Lab for sampl	e(s): 01 l	Batch: WG164	1207-1
Dimethyl phthalate	ND	ug	/I 5.	0 4.4	
Benzo(a)anthracene	ND	ug	/I 2.	0 0.77	
Benzo(a)pyrene	ND	ug	/I 2.	0 0.45	
Benzo(b)fluoranthene	ND	ug	/I 2.	0 0.81	
Benzo(k)fluoranthene	ND	ug	/I 2.	0 0.82	
Chrysene	ND	ug	/I 2.	0 0.83	
Acenaphthylene	ND	ug	/I 2.	0 0.59	
Anthracene	ND	ug	/I 2.	0 0.79	
Benzo(ghi)perylene	ND	ug	/I 2.	0 0.77	
Fluorene	ND	ug	/I 2.	0 1.0	
Phenanthrene	ND	ug	/I 2.	0 0.99	
Dibenzo(a,h)anthracene	ND	ug	/I 2.	0 0.45	
Indeno(1,2,3-cd)pyrene	ND	ug	/I 2.	0 0.94	
Pyrene	ND	ug	/I 2.	0 0.70	
Biphenyl	ND	ug	/I 2.	0 0.64	
4-Chloroaniline	ND	ug	/I 5.	0 0.65	
2-Nitroaniline	ND	ug	/I 5.	0 0.52	
3-Nitroaniline	ND	ug	/I 5.	0 0.57	
4-Nitroaniline	ND	ug	/I 5.	0 0.58	
Dibenzofuran	ND	ug	/I 2.	0 0.82	
2-Methylnaphthalene	ND	ug	/I 2.	0 0.68	
1,2,4,5-Tetrachlorobenzene	ND	ug	/l 10	0 0.62	
Acetophenone	ND	ug	/I 5.	0 0.98	
2,4,6-Trichlorophenol	ND	ug	/I 5.	0 0.49	
p-Chloro-m-cresol	ND	ug	/I 2.	0 0.41	
2-Chlorophenol	ND	ug	/I 2.	0 0.40	
2,4-Dichlorophenol	ND	ug	/I 5.	0 0.53	
2,4-Dimethylphenol	ND	ug	/I 5.	0 1.1	
2-Nitrophenol	ND	ug	/I 10	0 0.46	

.

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/22/22 08:58

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 05/21/22 08:10

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1641207-1	
4-Nitrophenol	ND		ug/l		10	1.1	
2,4-Dinitrophenol	ND		ug/l		20	3.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	5.4	
Pentachlorophenol	ND		ug/l		10	2.0	
Phenol	ND		ug/l		5.0	1.3	
2-Methylphenol	ND		ug/l		5.0	1.1	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.55	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.38	
Benzoic Acid	ND		ug/l		50	13.	
Benzyl Alcohol	ND		ug/l		2.0	0.70	
Carbazole	ND		ug/l		2.0	0.76	

Surrogate	%Recovery Qu	Acceptance ualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	61	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	60	41-149

Project Number: Project Name: BATTERY TUNNEL BATTERY TUNNEL

> Lab Number: L2226133

Report Date: 05/25/22

Semivolatile Organics by GC/MS - Westborough Lab. Associated sample(s): 01 Batch: WG1641207-2	LCS Parameter %Recovery
ed sample/s	Qual
i)· 01 Batch·	LCSD %Recovery
WG1641207-	Qual
2 WG1641207-3	%Recovery Limits
	RPD
	Qual
	RPD Limits

NDPA/DPA	Nitrobenzene	Naphthalene	Isophorone	Hexachloroethane	Hexachlorocyclopentadiene	Hexachlorobutadiene	Bis(2-chloroethoxy)methane	Bis(2-chloroisopropyl)ether	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Fluoranthene	2,6-Dinitrotoluene	2,4-Dinitrotoluene	3,3'-Dichlorobenzidine	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	2-Chloronaphthalene	Bis(2-chloroethyl)ether	Hexachlorobenzene	1,2,4-Trichlorobenzene	Acenaphthene	emivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01
67	72	62	72	59	33	56	71	57	65	63	70	71	68	54	57	56	58	62	67	64	57	64	h Lab Associated
					۵																		sample(s): 01
73	80	68	78	64	36	60	77	62	71	67	78	79	74	54	60	61	62	69	72	70	61	69	Batch: WG16
40-140	40-140	40-140	40-140	40-140	Q 40-140	40-140	40-140	40-140	40-140	40-140	40-140	40-140	48-143	40-140	36-97	40-140	40-140	40-140	40-140	40-140	39-98	37-111	Batch: WG1641207-2 WG1641207-3
9	11	9	8	8	9	7	8	8	9	6	11	11	8	0	O 1	9	7	11	7	9	7	œ	1207-3
30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	

Page 13 of 47

Project Number: Project Name: BATTERY TUNNEL BATTERY TUNNEL

> Lab Number: L2226133

Report Date: 05/25/22

LCS LCSD %Recovery Parameter %Recovery Qual %Recovery Qual Limits RPD
%F.
LCSD Recovery
%Recovery Limits
RPD
Qual
RPD Limits

emivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	Lab Associated sample(s):	01 Batch: WG1641207-2 W	WG1641207-3		
n-Nitrosodi-n-propylamine	73	79	29-132	8	30
Bis(2-ethylhexyl)phthalate	72	79	40-140	9	30
Butyl benzyl phthalate	74	81	40-140	9	30
Di-n-butylphthalate	74	80	40-140	8	30
Di-n-octylphthalate	73	81	40-140	10	30
Diethyl phthalate	71	77	40-140	8	30
Dimethyl phthalate	68	75	40-140	10	30
Benzo(a)anthracene	68	75	40-140	10	30
Benzo(a)pyrene	63	70	40-140	1	30
Benzo(b)fluoranthene	65	72	40-140	10	30
Benzo(k)fluoranthene	64	71	40-140	10	30
Chrysene	67	74	40-140	10	30
Acenaphthylene	67	75	45-123	11	30
Anthracene	68	73	40-140	7	30
Benzo(ghi)perylene	70	76	40-140	00	30
Fluorene	67	74	40-140	10	30
Phenanthrene	68	73	40-140	7	30
Dibenzo(a,h)anthracene	68	74	40-140	8	30
Indeno(1,2,3-cd)pyrene	71	79	40-140	11	30
Pyrene	70	76	26-127	8	30
Biphenyl	63	68	40-140	8	30
4-Chloroaniline	69	72	40-140	4	30
2-Nitroaniline	70	79	52-143	12	30

Project Number: Project Name: BATTERY TUNNEL

BATTERY TUNNEL

Lab Number: L2226133

Report Date: 05/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	ough Lab Associa	ated sample(s		Batch: WG1641207-2				
3-Nitroaniline	63		63		25-145	0		30
4-Nitroaniline	62		67		51-143	8		30
Dibenzofuran	66		72		40-140	9		30
2-Methylnaphthalene	64		70		40-140	9		30
1,2,4,5-Tetrachlorobenzene	64		70		2-134	9		30
Acetophenone	68		75		39-129	10		30
2,4,6-Trichlorophenol	74		80		30-130	œ		30
p-Chloro-m-cresol	73		82		23-97	12		30
2-Chlorophenol	63		70		27-123	1		30
2,4-Dichlorophenol	72		78		30-130	8		30
2,4-Dimethylphenol	71		78		30-130	9		30
2-Nitrophenol	67		74		30-130	10		30
4-Nitrophenol	49		53		10-80	8		30
2,4-Dinitrophenol	47		54		20-130	14		30
4,6-Dinitro-o-cresol	66		72		20-164	9		30
Pentachlorophenol	60		67		9-103	=		30
Phenol	34		37		12-110	8		30
2-Methylphenol	62		68		30-130	9		30
3-Methylphenol/4-Methylphenol	65		71		30-130	9		30
2,4,5-Trichlorophenol	73		82		30-130	12		30
Benzoic Acid	ω	Q	6	Q	10-164	70	Q	30
Benzyl Alcohol	64		70		26-116	9		30
Carbazole	71		78		55-144	9		30

Page 15 of 47

Project Name: BATTERY TUNNEL

Lab Number:

Project Number: BATTERY TUNNEL

 Lab Number:
 L2226133

 Report Date:
 05/25/22

LCS LCSD %Recovery RPD
LCS LCSD %Recovery

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1641207-2 WG1641207-3

erganico a) como recursorongir cas recognica cambro(o). Or cason recognica e recognica		:	(
Surrogate	LCS %Recovery Qual	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	45		49		21-120
Phenol-d6	32		36		10-120
Nitrobenzene-d5	69		76		23-120
2-Fluorobiphenyl	63		70		15-120
2,4,6-Tribromophenol	69		77		10-120
4-Terphenyl-d14	60		65		41-149

PCBS

Serial_No:05252212:35

Project Name: BATTERY TUNNEL **Lab Number:** L2226133

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01 Date Collected: 05/17/22 14:30

Client ID: BATTERY-TUNNEL-05172022 Date Received: 05/17/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8082A Extraction Date: 05/21/22 08:11

Analytical Patrix: 05/00/00 45:03

Analytical Date: 05/22/22 15:03 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 05/21/22

Cleanup Method: EPA 3660B Cleanup Date: 05/21/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.013	1	Α
Aroclor 1221	ND		ug/l	0.083	0.018	1	Α
Aroclor 1232	ND		ug/l	0.083	0.038	1	Α
Aroclor 1242	ND		ug/l	0.083	0.030	1	Α
Aroclor 1248	ND		ug/l	0.083	0.038	1	А
Aroclor 1254	ND		ug/l	0.083	0.014	1	Α
Aroclor 1260	ND		ug/l	0.083	0.029	1	Α
Aroclor 1262	ND		ug/l	0.083	0.028	1	Α
Aroclor 1268	ND		ug/l	0.083	0.026	1	Α
PCBs, Total	ND		ug/l	0.083	0.013	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	57		30-150	В
2,4,5,6-Tetrachloro-m-xylene	68		30-150	Α
Decachlorobiphenyl	64		30-150	Α

Project Name: BATTERY TUNNEL Lab Number: L2226133

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 05/22/22 14:39

Analyst: WR

Extraction Method: EPA 3510C
Extraction Date: 05/21/22 08:11
Cleanup Method: EPA 3665A
Cleanup Date: 05/21/22
Cleanup Method: EPA 3660B
Cleanup Date: 05/21/22

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01 Ba	atch:	WG1641211	-1
Aroclor 1016	ND		ug/l	0.083	;	0.013	А
Aroclor 1221	ND		ug/l	0.083		0.018	Α
Aroclor 1232	ND		ug/l	0.083	,	0.038	Α
Aroclor 1242	ND		ug/l	0.083	}	0.030	Α
Aroclor 1248	ND		ug/l	0.083	1	0.038	Α
Aroclor 1254	ND		ug/l	0.083	1	0.014	Α
Aroclor 1260	ND		ug/l	0.083	1	0.029	А
Aroclor 1262	ND		ug/l	0.083	1	0.028	Α
Aroclor 1268	ND		ug/l	0.083	1	0.026	Α
PCBs, Total	ND		ug/l	0.083		0.013	Α

		Acceptano	ce
Surrogate	%Recovery Qual	lifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59	30-150	В
Decachlorobiphenyl	67	30-150	В
2,4,5,6-Tetrachloro-m-xylene	58	30-150	Α
Decachlorobiphenyl	72	30-150	Α

Project Number: Project Name: BATTERY TUNNEL BATTERY TUNNEL

Report Date: Lab Number: 05/25/22 L2226133

76 77 40-140 2	d Biphenyls by GC - Westborou	LCS %Recovery Qual gh Lab Associated sample	Qual ed sample(s)	%Recovery 01 Batch:	' Qual :: WG1641211	_ %	RPD	Qual	RPD Limits Column	
76 77 40-140 2	olychlorinated Biphenyls by GC - Westborough L Arodor 1016	ab Associate	ed sample(s):	01 Batch:	WG1641211-		ω		50	
	Arodor 1260	76		77		40-140	N (50	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery Qual	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		63		30-150	В
Decachlorobiphenyl	70		71		30-150	В
2,4,5,6-Tetrachloro-m-xylene	64		64		30-150	Þ
Decachlorobiphenyl	74		77		30-150	⊳

METALS

05/17/22 14:30

Date Collected:

Project Name: Lab Number: **BATTERY TUNNEL** L2226133 **Project Number: Report Date: BATTERY TUNNEL** 05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01

BATTERY-TUNNEL-05172022 Client ID: Date Received: 05/17/22 Field Prep: Not Specified

Sample Location: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	8.72		mg/l	0.100	0.032	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Antimony, Total	ND		mg/l	0.050	0.007	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Arsenic, Total	0.041		mg/l	0.005	0.002	1	05/23/22 17:42	05/24/22 19:38	EPA 3005A	19,200.7	EW
Barium, Total	0.110		mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Beryllium, Total	ND		mg/l	0.005	0.001	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Cadmium, Total	0.017		mg/l	0.005	0.001	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Calcium, Total	671		mg/l	1.00	0.350	10	05/23/22 17:42	05/24/22 19:55	EPA 3005A	19,200.7	EW
Chromium, Total	0.140		mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Cobalt, Total	0.026		mg/l	0.020	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Copper, Total	0.100		mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Iron, Total	31.7		mg/l	0.050	0.009	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Lead, Total	0.257		mg/l	0.010	0.003	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Magnesium, Total	65.1		mg/l	0.100	0.015	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Manganese, Total	3.01		mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Mercury, Total	0.00400		mg/l	0.00020	0.00009	1	05/23/22 22:24	05/24/22 07:45	EPA 245.1	3,245.1	DMB
Nickel, Total	0.234		mg/l	0.025	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Potassium, Total	232		mg/l	2.50	0.237	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Selenium, Total	0.013		mg/l	0.010	0.004	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Silver, Total	ND		mg/l	0.007	0.003	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Sodium, Total	452		mg/l	2.00	0.120	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Thallium, Total	0.008	J	mg/l	0.020	0.003	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Vanadium, Total	0.018		mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
Zinc, Total	1.79		mg/l	0.050	0.002	1	05/23/22 17:42	05/24/22 17:04	EPA 3005A	19,200.7	EW
·											

Project Name: BATTERY TUNNEL
Project Number: BATTERY TUNNEL

Lab Number: L2226133 **Report Date:** 05/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batcl	h: WG16	641734-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	9 1	05/23/22 22:24	05/24/22 06:52	3,245.1	DMB

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	ield Lab for sample(s):	01 Batc	h: WG10	641852-	1				
Aluminum, Total	ND	mg/l	0.100	0.032	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Antimony, Total	ND	mg/l	0.050	0.007	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Arsenic, Total	ND	mg/l	0.005	0.002	1	05/23/22 17:42	05/24/22 18:48	19,200.7	EW
Barium, Total	ND	mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Beryllium, Total	ND	mg/l	0.005	0.001	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Cadmium, Total	ND	mg/l	0.005	0.001	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Calcium, Total	ND	mg/l	0.100	0.035	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Chromium, Total	ND	mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Cobalt, Total	ND	mg/l	0.020	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Copper, Total	ND	mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Iron, Total	ND	mg/l	0.050	0.009	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Lead, Total	ND	mg/l	0.010	0.003	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Magnesium, Total	ND	mg/l	0.100	0.015	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Manganese, Total	ND	mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Nickel, Total	ND	mg/l	0.025	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Potassium, Total	ND	mg/l	2.50	0.237	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Selenium, Total	ND	mg/l	0.010	0.004	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Silver, Total	ND	mg/l	0.007	0.003	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Sodium, Total	ND	mg/l	2.00	0.120	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Thallium, Total	ND	mg/l	0.020	0.003	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Vanadium, Total	ND	mg/l	0.010	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW
Zinc, Total	ND	mg/l	0.050	0.002	1	05/23/22 17:42	05/24/22 16:50	19,200.7	EW

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Number: BATTERY TUNNEL Project Name:

BATTERY TUNNEL

Lab Number: L2226133

Report Date: 05/25/22

	LCS		LCSD		%Recovery		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual

RPD Limits

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1641734-2

Mercury, Total 95 85-115

Project Number: Project Name: BATTERY TUNNEL

BATTERY TUNNEL

Lab Number:

Report Date:

05/25/22 L2226133

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1641852-2	mple(s): 01 Batch: WG1	641852-2			
Aluminum, Total	104	·	85-115		
Antimony, Total	106	•	85-115		
Arsenic, Total	112		85-115		
Barium, Total	102		85-115		
Beryllium, Total	107	•	85-115		
Cadmium, Total	102		85-115		
Calcium, Total	105		85-115		
Chromium, Total	102	•	85-115	•	
Cobalt, Total	97	•	85-115	•	
Copper, Total	105	•	85-115	•	
Iron, Total	103	•	85-115		
Lead, Total	107	•	85-115		
Magnesium, Total	104	•	85-115		
Manganese, Total	103	•	85-115	•	
Nickel, Total	100	•	85-115	•	
Potassium, Total	104	•	85-115	•	
Selenium, Total	111	•	85-115	•	
Silver, Total	104	•	85-115	•	
Sodium, Total	106	•	85-115	•	
Thallium, Total	104	•	85-115		
Vanadium, Total	104	•	85-115		

Project Number: BATTERY TUNNEL Project Name:

BATTERY TUNNEL

Report Date: Lab Number: L2226133

Parameter LCS %Recovery LCSD %Recovery %Recovery
Limits RPD **RPD Limits**

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1641852-2

102

85-115

Zinc, Total

05/25/22

Matrix Spike Analysis Batch Quality Control

Project Name:	BATTERY TUNNEL	Lab Number:	L2226133
Project Number:	BATTERY TUNNEL	Report Date:	05/25/22

Parameter	Native Sample	MS Added	Found	MS MS MSD Found %Recovery Qual Found	Qual Fo	MSD Found	MSD Recovery RPD %Recovery Qual Limits RPD Qual Limits	Qual	Recovery Limits	RPD Q	lual L	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641734-3 QC Sample:	sociated sai	mple(s): 01	QC Batch	ID: WG1641734-	3 QC	Sample:	L2226058-01 Client ID: MS Sample	Client	ID: MS Sa	ımple		
Mercury, Total	ND D	0.005	0.00499	100					70-130			20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641734-5 QC Sample: L2226065-01 Client ID: MS Sample	sociated sai	mple(s): 01	QC Batch	ID: WG1641734-	5 QC	Sample:	L2226065-01	Client	ID: MS Sa	ımple		
Mercury, Total	N D	0.005	0.00483	97			,		70-130			20

Magnesium, Total
Manganese, Total
Nickel, Total
Potassium, Total
Selenium, Total
Silver, Total
Sodium, Total
Thallium, Total
Vanadium, Total

0.008J 0.018

0.12

0.102

0.5

0.514

99

75-125 75-125

 2
 20

 20
 20

 20
 20

 20
 20

 20
 20

 20
 20

452

6

430

0

Ø

0.013

0.148

R

0.12

0.054

108

0.234

0.5 0.5

0.668

87

70.3

68

Q Q

52

75-125 75-125 75-125 75-125

232

6

233

6

Ø

75-125

75-125 75-125 75-125

75-125 75-125

Matrix Spike Analysis Batch Quality Control

Project Name: BATTERY TUNNEL

BATTERY TUNNEL

ntrol Lab Number:

Report Date:

L2226133 05/25/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	Associated sam	nple(s): 01	QC Batch	QC Batch ID: WG1641852-3	QC Sample: L2226133-01		Client ID: BATTERY-TUNNEL-05172022	VEL-05172022
Aluminum, Total	8.72	2	10.6	94			75-125 -	20
Antimony, Total	ND	0.5	0.492	98			75-125 -	20
Arsenic, Total	0.041	0.12	0.179	115	ı		75-125 -	20
Barium, Total	0.110	2	2.09	99			75-125 -	20
Beryllium, Total	ND	0.05	0.046	92			75-125 -	20
Cadmium, Total	0.017	0.053	0.065	90		•	75-125 -	20
Calcium, Total	671	10	662	0	Ω .	•	75-125 -	20
Chromium, Total	0.140	0.2	0.318	89		•	75-125 -	20
Cobalt, Total	0.026	0.5	0.466	88		ı	75-125 -	20

Copper, Total Iron, Total

Lead, Total

0.257

0.53

0.736

90

65.1

3.01

0.100

0.25

0.354

102

31.7

_

29.3

0

Ø

Matrix Spike Analysis Batch Quality Control

Project Name: BATTERY TUNNEL

Project Number: BATTERY TUNNEL

TUNNEL	Lab Number:	L2226133
TUNNEL	Report Date:	05/25/22

1 Client ID: BATTERY-TUNNEL-05172022 75-125 - 20	Client ID	le: L2226133-01	QC Sample	352-3 Q	ID: WG16418	QC Batch 2.16	nple(s): 01	Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-3 QC Sample Zinc, Total 1.79 0.5 2.16 74 Q -	Total Metals - Zinc, Total
Recovery RPD Limits RPD Limits	Re	MSD %Recovery	MSD Found		MS MS Found %Recovery	MS Found	MS Added	Native Sample	Parameter

Lab Duplicate Analysis

Batch Quality Control

Batch Qualit

Project Name:
Project Number:

BATTERY TUNNEL
BATTERY TUNNEL

Parameter	Native Sample Dup	Duplicate Sample	Units	RPD	Qual	RPD Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641734-4 QC Sample: L2226058-01 Client ID: DUP Sample	QC Batch ID: WG1641734-4	QC Sample:	L2226058-01	Client ID: D	UP Sample	
Mercury, Total	ND	N D	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641734-6 QC Sample: L2226065-01 Client ID: DUP Sample	QC Batch ID: WG1641734-6	QC Sample:	L2226065-01	Client ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

Lab Number: Report Date:

L2226133 05/25/22

Project Name: Project Number: BATTERY TUNNEL BATTERY TUNNEL

Lab Duplicate Analysis Batch Quality Control

Report Date: Lab Number:

05/25/22 L2226133

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-4 QC Sample:	QC Batch ID: WG1641	852-4 QC Sample:	L2226133-01 (Client ID: B	.2226133-01 Client ID: BATTERY-TUNNEL-05172022
Aluminum, Total	8.72	8.58	mg/l	2	20

Parameter	Native Sample Dup	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1641852-4	QC Sample: L2	2226133-01	Client ID: BAT	QC Sample: L2226133-01 Client ID: BATTERY-TUNNEL-05172022
Aluminum, Total	8.72	8.58	mg/l	2	20
Antimony, Total	ND	ND	mg/l	NC	20
Barium, Total	0.110	0.108	mg/l	2	20
Beryllium, Total	ND	ND	mg/l	NC	20
Cadmium, Total	0.017	0.017	mg/l		20
Chromium, Total	0.140	0.136	mg/l	ω	20
Cobalt, Total	0.026	0.026	mg/l		20
Copper, Total	0.100	0.099	mg/l		20
Iron, Total	31.7	30.7	mg/l	ω	20
Lead, Total	0.257	0.252	mg/l	2	20
Magnesium, Total	65.1	64.4	mg/l	_	20
Manganese, Total	3.01	2.98	mg/l	_	20
Nickel, Total	0.234	0.232	mg/l	_	20
Potassium, Total	232	231	mg/l	0	20
Selenium, Total	0.013	0.008J	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Sodium, Total	452	452	mg/l	0	20
Thallium, Total	0.008J	0.007J	mg/l	NC	20
Vanadium, Total	0.018	0.017	mg/l	4	20

Lab Duplicate Analysis Batch Quality Control

Ţ.

Project Name:
Project Number:

BATTERY TUNNEL
BATTERY TUNNEL

Parameter	Native Sample Dup	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-4 QC Sample: L2226133-01 Client ID: BATTERY-TUNNEL-05172022	QC Batch ID: WG1641852-4	QC Sample:	L2226133-01	Client ID: B.	ATTERY-TUNNEL-05172022
Zinc, Total	1.79	1.78	mg/l	_	20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-4 QC Sample: L2226133-01 Client ID: BATTERY-TUNNEL-05172022	QC Batch ID: WG1641852-4	QC Sample:	L2226133-01	Client ID: B.	ATTERY-TUNNEL-05172022
Arsenic, Total	0.041	0.039	mg/l	Ŋ	20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-4 QC Sample: L2226133-01 Client ID: BATTERY-TUNNEL-05172022	QC Batch ID: WG1641852-4	QC Sample:	L2226133-01	Client ID: B.	ATTERY-TUNNEL-05172022
Calcium, Total	671	660	mg/l	2	20

Lab Number: Report Date:

L2226133 05/25/22

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: **Project Number:**

BATTERY TUNNEL BATTERY TUNNEL

Lab Number:

Report Date: 05/25/22 L2226133

Parameter Native Sample	Serial Dilution	Units	% D	% D Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1641852-6 QC Sample:	1852-6 QC Sample		Client ID: B	L2226133-01 Client ID: BATTERY-TUNNEL-05172022
Zinc, Total	1.97	mg/l	10	20

INORGANICS & MISCELLANEOUS

Serial_No:05252212:35

05/17/22 14:30

Date Collected:

Project Name:BATTERY TUNNELLab Number:L2226133Project Number:BATTERY TUNNELReport Date:05/25/22

SAMPLE RESULTS

Lab ID: L2226133-01

Client ID: BATTERY-TUNNEL-05172022 Date Received: 05/17/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Cyanide, Total	0.359		mg/l	0.005	0.001	1	05/24/22 10:50	05/24/22 13:37	1,9010C/9012B	CS
Nitrogen, Ammonia	78.9		mg/l	0.750	0.240	10	05/24/22 16:26	05/24/22 17:58	44,350.1	AT

L2226133

Project Name:BATTERY TUNNELLab Number:Project Number:BATTERY TUNNELReport Date:

Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab f	or sample(s): 01	Batch:	WG16	42100-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.024	1	05/24/22 16:26	05/24/22 17:24	44,350.1	АТ
General Chemistry	- Westborough Lab f	or sample(s): 01	Batch:	WG16	42156-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/24/22 10:50	05/24/22 13:23	1,9010C/9012	2B CS

Project Name:

BATTERY TUNNEL

Project Number: BATTERY TUNNEL Report Date: 05/25/22

20		N	85-115		105		107	Cyanide, Total
			1642156-3	2156-2 WG	Batch: WG1642	le(s): 01	sociated samp	General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1642156-2 WG1642156-3
20			90-110		ı		98	Nitrogen, Ammonia
				2100-2	Batch: WG1642	le(s): 01	sociated sampl	General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1642100-2
RPD Qual RPD Limits	Qual	RPD	%Recovery Limits	ry Qual	LCSD al %Recovery	ry Qu	LCS %Recovery Qual	Parameter

Lab Number:

L2226133

Matrix Spike Analysis Batch Quality Control

Project Name: BATTERY TUNNEL

Project Number: BATTERY TUNNEL

	Datch Quality Control
Lab Number:	
L2226133	

Report Date:

05/25/22

O i i i i i i i i i i i i i i i i i i i	General Chemistry - \ Sample	Nitrogen, Ammonia	General Chemistry - 1	Parameter
Ž	General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1642156-4 WG1642156-5 QC Sample: L2225034-08 Client ID: MS Sample	0.027J	General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1642100-4	Native Sample
٥ ن	ciated samp	4	ciated samp	MS Added
0 212	le(s): 01	3.36	le(s): 01	MS Found
106	QC Batch ID: V	84	QC Batch ID: V	MS MS MSD Found %Recovery Qual Found
0 400	VG1642156-4	Q	VG1642100-4	MSD Qual Found
	WG1642156-5		QC Sample: L2224612-03 Client ID: MS Sample	
)	QC Sample		L2224612-03	MSD Recovery RPD %Recovery Qual Limits RPD Qual Limits
80-120	: L2225034-	90-110	Client ID:	Recovery Limits R
20	08 Client	'	MS Sampl	PD Qual
20	ID: MS	20	Ф	RPD Limits

Project Name: Project Number: BATTERY TUNNEL BATTERY TUNNEL

Lab Duplicate Analysis

Batch Quality Control Report Date: Lab Number: 05/25/22 L2226133

Parameter	Native Sample	Duplicate Samp	ple Units	RPD Qual	Qual RPD Limits	ts
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1642100-3	ple(s): 01 QC Batch ID:	WG1642100-3	QC Sample: L222	24612-03 Cli	QC Sample: L2224612-03 Client ID: DUP Sample	
Nitrogen, Ammonia	0.027J	ND	mg/l	NC	20	

Report Date: 05/25/22 Serial_No:05252212:35 Lab Number: L2226133

Sample Receipt and Container Information

Were project specific reporting limits specified?

Project Number: BATTERY TUNNEL

Project Name:

BATTERY TUNNEL

YES

Cooler Information

Cooler Custody Seal

Absent

Container Information	ormation		Initial	Final	Final Temp			Frozen	
Container ID	Container Type	Cooler	рН		pH deg C Pres Seal	Pres	Seal	Date/Time	Analysis(*)
L2226133-01A	Plastic 120ml H2SO4 preserved	A	\$	2	3.0	~	Absent		NH3-350(28)
L2226133-01B	Plastic 250ml NaOH preserved	A	v 12	×12	3.0	~	Absent		TCN-9010(14)
L2226133-01C	Plastic 250ml HNO3 preserved	>	2	\$	3.0	~	Absent		NI-UI(180),SB-UI(180),BA-UI(180),AG- UI(180),CA-UI(180),ZN-UI(180),CO-UI(180),K- UI(180),MG-UI(180),FE-UI(180),SE- UI(180),HG-U(28),CD-UI(180),AL-UI(180),MN- UI(180),CR-UI(180),NA-UI(180),BE-UI(180),TL- UI(180),CU-UI(180),AS-UI(180),V-UI(180),PB- UI(180)
L2226133-01D	Amber 1000ml unpreserved	>	7	7	3.0	~	Absent		NYTCL-8082-1200ML(365),NYTCL-8270(7)
L2226133-01E	Amber 1000ml unpreserved	A	7	7	3.0	~	Absent		NYTCL-8082-1200ML(365),NYTCL-8270(7)

pe	Initial Cooler pH	Initial Final Temp pH pH deg C Pres Seal	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
04 preserved	⊳	^ 2	٨	3.0 Y Absent	~	Absent		NH3-350(28)
H preserved	Þ	>12	>12	3.0	~	Y Absent		TCN-9010(14)
3 preserved	>	۵	^2	3.0	~	Y Absent		NI-UI(180), SB-UI(180), BA-UI(180), AG- UI(180), CA-UI(180), ZN-UI(180), CO-UI(180), K UI(180), MG-UI(180), FE-UI(180), SE- UI(180), HG-U(28), CD-UI(180), AL-UI(180), MN UI(180), CR-UI(180), NA-UI(180), BE-UI(180), PB UI(180), CU-UI(180), AS-UI(180), V-UI(180), PB

GLOSSARY

Acronyms

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the

following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perlene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:BATTERY TUNNELLab Number:L2226133Project Number:BATTERY TUNNELReport Date:05/25/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 1,2,4,

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

CHAIN OF CUSTODY

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

1226133

11148

REPORT TO: INVOICE TO:

NQ-Non-Aqueous Liquid WG-Groundwater WW-Wastewater SL-Sludge REQUESTED ANALYSIS REAL SCOUCATED ANALYSIS
TCL 827
1-05176022 W/ 5 XXXXX

				1	-	Page 47 of 47
n Terms and Conditions (reverse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	please indicate EDD needed :	e needed:	please indicate package needed:	200	Please indicate date nee
		Other EDD		Other	B	Other
me	Received @ Lab By Date/Time					Rush 1 day
119/22 CP17	State man			Category B		Rush 2 day
16:25/	かまり	NYSDEC EDD X		Category A		Rush 3 day
1	Relinquished By Date/Time	Basic EDD F		Batch QC		10 day
Date/Time Total Cost:	Sampled By Date/Time	None Required		None Required		Standard Turn
	Client	fees may apply.	val; additional f	Availability contingent upon lab approval; additional fees may apply.	illty continge	Availat
		lements	Report Supplements	R	nd Time	Turnaround Time

CERTIFICATE OF ANALYSIS

Chain of Custody: 337651

Paradigm

AMA Analytical Services, Inc.

Address Client:

Rochester, NY 14608 179 Lake Avenue

P.O. Number: Not Provided

Job Location: Not Provided **Job Number:** Not Provided

Not Provided

Date Analyzed: Date Submitted: 05/19/2022 05/18/2022

Report Date:

Date Sampled: 05/17/2022 05/19/2022

Person Submitting:

Summary of Results of Water Borne Asbestos Analysis by TEM - USEPA Method 100.2 and ELAP 198.2

337651-1		AMA Sample
Battery-Tunnel- 05172022		Client Sample
Not Provided		Sample Type
05/17/2022 2:30 pm 0.3		Collection Date/Time
n 0.3		Sample Aliquot (ml)
1047.0		Sample Aliquot Filter Collection (ml) (mm²)
0.14	(mm²)	Filter Area Analyzed
24.9	Total	Sensitivity (MFL)
24.9	Long	vity
NAD NAD	Total Long	Fiber Count
NAD < 92.0	Mean	Total F
92.0	95% UCL	iber Con
N/A	95% LCL	c. (MFL)
< 92.0	Mean	Long Fi
92.0	95% UCL	ber Conc
N/A	95%	: (MFL)
		Total Fiber Conc. (MFL) Long Fiber Conc. (MFL) Comments

Quantitation:

Please Note: EPA Method 100.2 requires analysis of asbestos fibers with a minimum length of 10 um, which are reported in the long fiber concentration columns. AMA Analytical Services, Inc. also documents asbestos structures between 0.5um and 10um in length. Along with the long fibers these are reported in the total fiber concentration columns. Meets with ELAP 198.2 requirements.

which is 369 % of the analytical sensitivity. If 1 to 3 fibers were detected, the mean asbestos concentration is reported as less than the 95 % UCL. A lower confidence limit (LCL) does not apply (N/A) for samples in which three or The Limit of Quantitation (LOQ) for this method is equal to four asbestos fibers. If the sample had no asbestos detected (NAD) the mean asbestos concentration is reported as less than the 95% UCL (upper confidence limit), fewer asbestos fibers were detected.

Sensitivity **Analytical**

Typical analytical sensitivities for drinking water samples should be < 10 MFL for 'total' asbestos and <0.2 MFL for 'long' asbestos fibers. Analytical sensitivities may be much higher for water samples where the high concentration of suspended particulate requires using small aliquots to make usable sample preparations

Method of The method of analysis used is the EPA 100.2

Analysis:

Types:

Asbestos Chry = Chrysotile; Amos = Amosite; Croc = Crocidolite; Trem = Tremolite; Actn = Actinolite; Anth = Anthophyllite

All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy.

Analyst(s): Erin McCaughey

Technical Director Andreas Saldivar

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client. This report must not be used to claim, and does not imply product certification, approval, or endorsement by AIHA-LAP or any agency of the Federal Government. All rights reserved. AMA Analytical Services, Inc. written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly

AMA Analytical Services, Inc.
Focused on Results www.amalab.com
AIHA-LAP (#100470) NVLAP (#101143-0) NY ELAP (10920) CHAIN OF CUSTODY
4475 Forbes Blvd. Lanham, MD 20706

(Please Refer To This Number For Inquires)

Time Delivery Information (For Lab Use Only) CRUSS	Date 5 181 22	Relinquished by: Received by:	Print Name	Relinquished by: Received by:
		n on S/19/22	Filter by 201	
rea / M / M / D / COMMENTS/SPECIAL PLAN / MO INSTRUCTIONS	to complete bottom section. hall air and surface samples VOL (L) Wipe Area TIME (Air Samples) (Dust Samples)	If field data sheets are submitted, there is no need to complete bottom section. *It is recommended that blank samples be submitted with all air and surface samples VOL (L) W N DESCRIPTION DATE TIME (Air Samples) (Du	If field data sheet *It is recomm # MATERIAL and/or LOCATION DESCRIPTION	SAI SAMPLE#
Water □ Pb ter □ Pb ter □ Pb ?e (Media rap(Q1 Swab((C1 Swab_		Qual. (pres/abs) Vacuum/Dust(QTY) Quan. (s/area) Vacuum D5755-95(QTY) Quan. (s/area) Dust D6480-99(QTY) TEM Water Qual. (pres/abs)(QTY)		DOther (specify
Metals Analysis Pb Paint Chip □ % by Weight(QTY) *Pb Dust Wipe(QTY) *Pb Air(QTY) Pb Soil/Solid(QTY) Pb TCLP(QTY)	OTY.	TEM Bulk	Ashestos Analysis Indicate Filter Type:	*PCM Air - Please Indicate Filter Type: \[\Pi \text{NIOSH 7400} \] \((QT') \] *TEM Air - Please Indicate Filter Type: \[\Pi \text{AHERA} \] \((QT') \) \[\Pi \text{NIOSH 7402} \] \((OT') \)
REPORT TO: □ Email 1: □ Email 2: □ Email 3:	ed By Noon	NORMAL BUSINESS HO 3 Day 5 Day + 5 25 25 22 Date Due: 5 25 25 22 h TATs may not be technically feasible for so	st be pre-scheduled)	AFTER HOURS (mu A Hours
Cell: Reports and Invoices provided by Email only.	ay+ by default.	5. Collected by: If a TAT is not selected, AMA will assign 5-Day+ by default.		5. Phone #:
Cell:	ੜ 			
5O ‡			4	
	nation:	Submittal Information:	ation: Paradipm	AMA Client Information: 1. Client Name:
			(301) 459-2640 • (800) 346-0961 • Fax (301) 459-2643	(301) 459-264

CHAIN OF CUSTODY

	_	_		_	_	_	_		_					177				
									5/17/2022	DATE COLLECTED		Ва	PROJE		1			D A R
									14:30	TIME		Battery Tunnel	PROJECT REFERENCE					
										m ⊣ − w O ≥ ≤ O C			NCE		7			
									×	พ≽¤ด								
									Battery-Tunnel-05172022	SAMPLE IDENTIFIER		Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	ATTN: Reporting	PHONE:	CITY: Rochester STATE: NY	ADDRESS: 179 Lake Ave	CLIENT: Paradigm Environmental	REPORT TO:
									5	× - 2 - 2 - 3		WA - Water WG - Groundwater			ZIP: 14608			
_	246	10 000	SV.	4				8.6	WA	∞ π □ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο		dwater	ATTN:	PH	CITY:	AD	CLI	^
									×	∞ π m z - > → z o o			Ÿ.	PHONE:	::	ADDRESS:	CLIENT:	
									<u>^</u>	Asbesios	REC	WW					Sa	
											UES	- Drir I - Wa					Same	
_										and the second s	STEL	DW - Drinking Water WW - Wastewater						N
											REQUESTED ANALYSIS	Vater iter			STATE:			INVOICE TO:
											ALY:				ij			≡ TO:
_											SIS	SC						
												SO - Soil SL - Sludge			ZIP:			
												iI Idge						
										REMARKS		SD - Solid PT - Paint	reporting@paradigmenv.com	Email:	Quotation #:			
										Ø		WP -	paradi		#		LAB P	
												WP - Wipe CK - Caulk	gmenv.cc				LAB PROJECT ID	
										PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air	ĬĬ					
									i con	to to								

ANALYTICAL REPORT

Lab Number: L2226265

Client: Inventum Engineering

481 Carlisle Drive #202 Herndon, NY 20170

ATTN: Todd Waldrop
Phone: (571) 752-6562

Project Name: RITC

Project Number: BATTERY TUNNEL

Report Date: 05/25/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2226265-01	BATTERY-TUNNEL-05782022	WATER	3875 RIVER RD.	05/18/22 09:15	05/18/22

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Case Narrative (continued)

Report Submission

May 25, 2022: This final report includes the results of all requested analyses.

May 24, 2022: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Asbestos was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Total Metals

The WG1641899-3 MS recoveries for calcium (140%), magnesium (160%), and sodium (350%) performed on L2226265-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Date: 05/25/22

ORGANICS

VOLATILES

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/22/22 11:17

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	1.4		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	7.8		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/22 09:17

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1641540-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/22 09:17

Analyst: PD

A-Dichlorobenzene ND	Parameter	Result	Qualifier Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 <	olatile Organics by GC/MS - W	estborough Lab	for sample(s): 01	Batch:	WG1641540-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isoproylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 <	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 <td>Methyl tert butyl ether</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td>	Methyl tert butyl ether	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0	p/m-Xylene	ND	ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70	o-Xylene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 25 61 Freon-113 ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
Isopropylbenzene	1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27
	1,4-Dioxane	ND	ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70
	Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/22 09:17

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1641540-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	97		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	100		70-130		
Dibromofluoromethane	102		70-130		

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2226265

Report Date: 05/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 01	Batch:	WG1641540-3	WG1641540-4			
Methylene chloride	93		96		70-130	3	20	
1,1-Dichloroethane	94		94		70-130	0	20	
Chloroform	90		92		70-130	2	20	
Carbon tetrachloride	95		94		63-132	1	20	
1,2-Dichloropropane	93		95		70-130	2	20	
Dibromochloromethane	80		86		63-130	7	20	
1,1,2-Trichloroethane	81		86		70-130	6	20	
Tetrachloroethene	92		94		70-130	2	20	
Chlorobenzene	93		95		75-130	2	20	
Trichlorofluoromethane	88		89		62-150	1	20	
1,2-Dichloroethane	83		88		70-130	6	20	
1,1,1-Trichloroethane	92		93		67-130	1	20	
Bromodichloromethane	88		90		67-130	2	20	
trans-1,3-Dichloropropene	84		89		70-130	6	20	
cis-1,3-Dichloropropene	92		95		70-130	3	20	
Bromoform	78		83		54-136	6	20	
1,1,2,2-Tetrachloroethane	81		86		67-130	6	20	
Benzene	95		97		70-130	2	20	
Toluene	94		95		70-130	1	20	
Ethylbenzene	96		99		70-130	3	20	
Chloromethane	92		92		64-130	0	20	
Bromomethane	77		77		39-139	0	20	
Vinyl chloride	94		94		55-140	0	20	

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2226265

Report Date: 05/25/22

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 0°	Batch: WG16	641540-3	WG1641540-4			
Chloroethane	91		94		55-138	3		20
1,1-Dichloroethene	94		91		61-145	3		20
trans-1,2-Dichloroethene	96		97		70-130	1		20
Trichloroethene	90		91		70-130	1		20
1,2-Dichlorobenzene	92		95		70-130	3		20
1,3-Dichlorobenzene	94		96		70-130	2		20
1,4-Dichlorobenzene	92		94		70-130	2		20
Methyl tert butyl ether	82		90		63-130	9		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	95		100		70-130	5		20
cis-1,2-Dichloroethene	94		97		70-130	3		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	85		85		36-147	0		20
Acetone	83		89		58-148	7		20
Carbon disulfide	91		90		51-130	1		20
2-Butanone	72		78		63-138	8		20
4-Methyl-2-pentanone	82		91		59-130	10		20
2-Hexanone	80		88		57-130	10		20
Bromochloromethane	91		94		70-130	3		20
1,2-Dibromoethane	82		88		70-130	7		20
1,2-Dibromo-3-chloropropane	80		85		41-144	6		20
Isopropylbenzene	95		96		70-130	1		20
1,2,3-Trichlorobenzene	86		89		70-130	3		20

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

05/25/22

Report Date:

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG	1641540-3	WG1641540-4			
1,2,4-Trichlorobenzene	87		90		70-130	3	20	
Methyl Acetate	84		90		70-130	7	20	
Cyclohexane	97		97		70-130	0	20	
1,4-Dioxane	88		96		56-162	9	20	
Freon-113	92		93		70-130	1	20	
Methyl cyclohexane	95		96		70-130	1	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	92	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	100	98	70-130
Dibromofluoromethane	96	96	70-130

SEMIVOLATILES

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 05/19/22 23:50

Analytical Date: 05/20/22 12:52

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: **RITC** L2226265

Project Number: Report Date: **BATTERY TUNNEL** 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Field Prep: Not Specified

Sample Location: 3875 RIVER RD.

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

% Recovery	Acceptance Qualifier Criteria
41	21-120
32	10-120
52	23-120
47	15-120
64	10-120
47	41-149
	41 32 52 47 64

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/19/22 23:52
Analytical Date: 05/21/22 16:27

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Acenaphthene	0.27		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.78		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	7.4		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.37		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.18		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.49		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.12		ug/l	0.10	0.01	1
Chrysene	0.47		ug/l	0.10	0.01	1
Acenaphthylene	0.36		ug/l	0.10	0.01	1
Anthracene	0.24		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.18		ug/l	0.10	0.01	1
Fluorene	0.40		ug/l	0.10	0.01	1
Phenanthrene	0.87		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.08	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.19		ug/l	0.10	0.01	1
Pyrene	0.54		ug/l	0.10	0.02	1
2-Methylnaphthalene	0.92		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	51	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	51	41-149

Project Name: RITC Lab Number:

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/20/22 09:52

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 05/19/22 23:50

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/N	IS - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1640771-1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50
Hexachlorocyclopentadiene	ND		ug/l		20	0.69
Isophorone	ND		ug/l		5.0	1.2
Nitrobenzene	ND		ug/l		2.0	0.77
NDPA/DPA	ND		ug/l		2.0	0.42
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5
Butyl benzyl phthalate	ND		ug/l		5.0	1.2
Di-n-butylphthalate	ND		ug/l		5.0	0.39
Di-n-octylphthalate	ND		ug/l		5.0	1.3
Diethyl phthalate	ND		ug/l		5.0	0.38
Dimethyl phthalate	ND		ug/l		5.0	1.8
Biphenyl	ND		ug/l		2.0	0.46
4-Chloroaniline	ND		ug/l		5.0	1.1
2-Nitroaniline	ND		ug/l		5.0	0.50
3-Nitroaniline	ND		ug/l		5.0	0.81
4-Nitroaniline	ND		ug/l		5.0	0.80
Dibenzofuran	ND		ug/l		2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44
Acetophenone	ND		ug/l		5.0	0.53
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61
p-Chloro-m-cresol	ND		ug/l		2.0	0.35

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/20/22 09:52

Analyst: SZ

Extraction Method: EPA 3510C 05/19/22 23:50 **Extraction Date:**

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/M	S - Westborough	Lab for s	sample(s):	01	Batch:	WG1640771-1
2-Chlorophenol	ND		ug/l		2.0	0.48
2,4-Dichlorophenol	ND		ug/l		5.0	0.41
2,4-Dimethylphenol	ND		ug/l		5.0	1.8
2-Nitrophenol	ND		ug/l		10	0.85
4-Nitrophenol	ND		ug/l		10	0.67
2,4-Dinitrophenol	ND		ug/l		20	6.6
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8
Phenol	ND		ug/l		5.0	0.57
2-Methylphenol	ND		ug/l		5.0	0.49
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77
Carbazole	ND		ug/l		2.0	0.49
Atrazine	ND		ug/l		10	0.76
Benzaldehyde	ND		ug/l		5.0	0.53
Caprolactam	ND		ug/l		10	3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84

Surrogate	%Recovery Qualifi	Acceptance er Criteria
2-Fluorophenol	52	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	71	41-149

Lab Number:

Project Name: RITC

Project Number: Report Date: **BATTERY TUNNEL** 05/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date:

Extraction Method: EPA 3510C 05/24/22 10:28 05/19/22 23:52 **Extraction Date:** Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	orough Lab	for sample	e(s): 01	Batch: WG1640772	2-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: Lab Number: **RITC** L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C Analytical Date: 05/24/22 10:28 05/19/22 23:52 **Extraction Date:**

Analyst: DV

> Result Qualifier RLMDL **Parameter** Units Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1640772-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 57 21-120 Phenol-d6 45 10-120 Nitrobenzene-d5 23-120 83

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2226265

Report Date: 05/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s)	: 01 Batch:	WG1640771-2	2 WG1640771-3		
Bis(2-chloroethyl)ether	60		61		40-140	2	30
3,3'-Dichlorobenzidine	60		65		40-140	8	30
2,4-Dinitrotoluene	73		75		48-143	3	30
2,6-Dinitrotoluene	79		84		40-140	6	30
4-Chlorophenyl phenyl ether	63		66		40-140	5	30
4-Bromophenyl phenyl ether	62		65		40-140	5	30
Bis(2-chloroisopropyl)ether	58		60		40-140	3	30
Bis(2-chloroethoxy)methane	59		61		40-140	3	30
Hexachlorocyclopentadiene	61		61		40-140	0	30
Isophorone	56		58		40-140	4	30
Nitrobenzene	68		74		40-140	8	30
NDPA/DPA	64		64		40-140	0	30
n-Nitrosodi-n-propylamine	59		62		29-132	5	30
Bis(2-ethylhexyl)phthalate	63		68		40-140	8	30
Butyl benzyl phthalate	66		69		40-140	4	30
Di-n-butylphthalate	61		65		40-140	6	30
Di-n-octylphthalate	65		67		40-140	3	30
Diethyl phthalate	63		65		40-140	3	30
Dimethyl phthalate	62		64		40-140	3	30
Biphenyl	64		68		40-140	6	30
4-Chloroaniline	56		59		40-140	5	30
2-Nitroaniline	74		82		52-143	10	30
3-Nitroaniline	71		74		25-145	4	30

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2226265

Report Date: 05/25/22

arameter	LCS %Recovery	LCSI Qual %Recov	,	covery mits RPD	RPD Qual Limits
emivolatile Organics by GC/MS - West	tborough Lab Associate	ed sample(s): 01 Ba	atch: WG1640771-2 W	G1640771-3	
4-Nitroaniline	74	78	51	-143 5	30
Dibenzofuran	65	67	40)-140 3	30
1,2,4,5-Tetrachlorobenzene	68	64	2-	-134 6	30
Acetophenone	62	63	39	9-129 2	30
2,4,6-Trichlorophenol	66	69	30	0-130 4	30
p-Chloro-m-cresol	66	68	2:	3-97 3	30
2-Chlorophenol	64	67	27	7-123 5	30
2,4-Dichlorophenol	67	70	30	0-130 4	30
2,4-Dimethylphenol	61	65	30	0-130 6	30
2-Nitrophenol	76	85	30)-130 11	30
4-Nitrophenol	64	64	10	0-80	30
2,4-Dinitrophenol	77	74	20)-130 4	30
4,6-Dinitro-o-cresol	95	90	20	5	30
Phenol	49	47	12	2-110 4	30
2-Methylphenol	59	66	30)-130 11	30
3-Methylphenol/4-Methylphenol	66	64	30)-130 3	30
2,4,5-Trichlorophenol	67	73	30	9	30
Carbazole	67	72	55	5-144 7	30
Atrazine	57	59	40)-140 3	30
Benzaldehyde	67	66	40)-140 2	30
Caprolactam	27	29	10)-130 7	30
2,3,4,6-Tetrachlorophenol	70	71	40)-140 1	30

Lab Control Sample Analysis

Batch Quality Control

Lab Number:

Project Number: BATTERY TUNNEL Report Date: 05/25/22

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1640771-2 WG1640771-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qua	Acceptance Criteria
2-Fluorophenol	59	61	21-120
Phenol-d6	45	45	10-120
Nitrobenzene-d5	68	73	23-120
2-Fluorobiphenyl	62	65	15-120
2,4,6-Tribromophenol	73	80	10-120
4-Terphenyl-d14	62	65	41-149

Project Name:

RITC

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2226265

Report Date: 05/25/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	ssociated sample(s): 01 Batch	n: WG1640772-2 WG1640	772-3	
Acenaphthene	72	73	40-140	1	40
2-Chloronaphthalene	72	73	40-140	1	40
Fluoranthene	69	72	40-140	4	40
Hexachlorobutadiene	67	70	40-140	4	40
Naphthalene	71	71	40-140	0	40
Benzo(a)anthracene	69	70	40-140	1	40
Benzo(a)pyrene	64	65	40-140	2	40
Benzo(b)fluoranthene	71	79	40-140	11	40
Benzo(k)fluoranthene	77	72	40-140	7	40
Chrysene	71	73	40-140	3	40
Acenaphthylene	65	66	40-140	2	40
Anthracene	69	72	40-140	4	40
Benzo(ghi)perylene	75	75	40-140	0	40
Fluorene	72	74	40-140	3	40
Phenanthrene	68	73	40-140	7	40
Dibenzo(a,h)anthracene	78	79	40-140	1	40
Indeno(1,2,3-cd)pyrene	79	79	40-140	0	40
Pyrene	70	72	40-140	3	40
2-Methylnaphthalene	71	72	40-140	1	40
Pentachlorophenol	58	58	40-140	0	40
Hexachlorobenzene	72	77	40-140	7	40
Hexachloroethane	66	68	40-140	3	40

Lab Control Sample Analysis

Project Name: RITC

Batch Quality Control

Lab Number:

L2226265

Project Number:

BATTERY TUNNEL

Report Date:

05/25/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits **Parameter** Qual Qual Limits RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1640772-2 WG1640772-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	58	57	21-120
Phenol-d6	47	46	10-120
Nitrobenzene-d5	72	71	23-120
2-Fluorobiphenyl	64	67	15-120
2,4,6-Tribromophenol	86	87	10-120
4-Terphenyl-d14	66	69	41-149

PCBS

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 05/20/22 12:12
Analytical Date: 05/21/22 11:39 Cleanup Method: EPA 3665A

Analytical Date: 05/21/22 11:39 Cleanup Method: EPA 3669
Analyst: JM Cleanup Date: 05/20/22

Cleanup Method: EPA 3660B Cleanup Date: 05/20/22

Parameter	Result Qual		Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by 0	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α
Aroclor 1260	ND		ug/l	0.071	0.061	1	В
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α
Aroclor 1268	ND		ug/l	0.071	0.061	1	Α
PCBs, Total	ND		ua/l	0.071	0.061	1	В

Surrageta	0/ Bassusmi	Ovelities	0 - 1	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91		30-150	Α
Decachlorobiphenyl	84		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В
Decachlorobiphenyl	83		30-150	В

L2226265

Lab Number:

Project Name: RITC

Project Number: BATTERY TUNNEL Report Date: 05/25/22

110port Bate: 00/20/2

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 05/21/22 10:49

Analyst: WR

Extraction Method: EPA 3510C
Extraction Date: 05/20/22 12:12
Cleanup Method: EPA 3665A
Cleanup Date: 05/20/22
Cleanup Method: EPA 3660B
Cleanup Date: 05/20/22

Result	Qualifier	Units		RL	MDL	Column
Westborough	h Lab for s	ample(s):	01	Batch:	WG1641016	-1
ND		ug/l	0	.071	0.061	А
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
ND		ug/l	0	.071	0.061	Α
	Westborough ND	Westborough Lab for s ND ND ND ND ND ND ND ND ND N	ND ug/l	ND ug/l 0 ND ug/l 0	ND ug/l 0.071 ND ug/l 0.071	ND ug/l 0.071 0.061 ND ug/l 0.071 0.061

		Acceptano	e
Surrogate	%Recovery Qualifie	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	110	30-150	Α
Decachlorobiphenyl	109	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	106	30-150	В
Decachlorobiphenyl	115	30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Lab Number:

L2226265

Project Number: BATTERY TUNNEL Report Date:

05/25/22

	LCS		LCS	SD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	very	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westboro	ough Lab Associa	ated sample(s)	: 01 E	Batch:	WG1641016-2	WG1641016-3	.			
Aroclor 1016	99		97	7		40-140	2		50	Α
Aroclor 1260	99		96	3		40-140	2		50	А

Surrogate	LCS %Recovery Q	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	108	102	30-150 A
Decachlorobiphenyl	95	103	30-150 A
2,4,5,6-Tetrachloro-m-xylene	99	96	30-150 B
Decachlorobiphenyl	105	103	30-150 B

METALS

Project Name: Lab Number: **RITC** L2226265

Project Number: Report Date: BATTERY TUNNEL 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01

Date Collected: 05/18/22 09:15 Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22

Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	1.92		mg/l	0.100	0.032	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Antimony, Total	ND		mg/l	0.050	0.007	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Arsenic, Total	0.007		mg/l	0.005	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Barium, Total	0.033		mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Beryllium, Total	ND		mg/l	0.005	0.001	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Cadmium, Total	0.052		mg/l	0.005	0.001	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Calcium, Total	558		mg/l	0.100	0.035	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Chromium, Total	0.005	J	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Cobalt, Total	0.048		mg/l	0.020	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Copper, Total	0.004	J	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Iron, Total	7.66		mg/l	0.050	0.009	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Lead, Total	0.010		mg/l	0.010	0.003	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Magnesium, Total	108		mg/l	0.100	0.015	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Manganese, Total	5.42		mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Mercury, Total	0.00011	J	mg/l	0.00020	0.00009	1	05/24/22 11:02	05/24/22 14:37	EPA 7470A	1,7470A	DMB
Nickel, Total	0.495		mg/l	0.025	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Potassium, Total	256		mg/l	2.50	0.237	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Selenium, Total	0.004	J	mg/l	0.010	0.004	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Silver, Total	ND		mg/l	0.007	0.003	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Sodium, Total	490		mg/l	4.00	0.240	2	05/24/22 08:22	05/25/22 10:40	EPA 3005A	1,6010D	SB
Thallium, Total	0.009	J	mg/l	0.020	0.003	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Vanadium, Total	0.008	J	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB
Zinc, Total	3.86		mg/l	0.050	0.002	1	05/24/22 08:22	05/25/22 08:59	EPA 3005A	1,6010D	SB

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG16	641899-	1				
Aluminum, Total	ND	mg/l	0.100	0.032	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Antimony, Total	ND	mg/l	0.050	0.007	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Arsenic, Total	ND	mg/l	0.005	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Barium, Total	ND	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Beryllium, Total	ND	mg/l	0.005	0.001	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Cadmium, Total	ND	mg/l	0.005	0.001	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Calcium, Total	ND	mg/l	0.100	0.035	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Chromium, Total	ND	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Cobalt, Total	ND	mg/l	0.020	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Copper, Total	ND	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Iron, Total	ND	mg/l	0.050	0.009	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Lead, Total	ND	mg/l	0.010	0.003	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Magnesium, Total	ND	mg/l	0.100	0.015	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Manganese, Total	ND	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Nickel, Total	ND	mg/l	0.025	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Potassium, Total	ND	mg/l	2.50	0.237	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Selenium, Total	ND	mg/l	0.010	0.004	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Silver, Total	ND	mg/l	0.007	0.003	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Sodium, Total	ND	mg/l	2.00	0.120	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Thallium, Total	ND	mg/l	0.020	0.003	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Vanadium, Total	ND	mg/l	0.010	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB
Zinc, Total	ND	mg/l	0.050	0.002	1	05/24/22 08:22	05/25/22 08:41	1,6010D	SB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mar	nsfield Lab for sample(s):	01 Bato	h: WG16	641901-	1				
Mercury, Total	ND	ma/l	0.00020	0.00009	9 1	05/24/22 11:02	05/24/22 14:30	1.7470A	DMB

Serial_No:05252215:12

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG164189	9-2					
Aluminum, Total	108		-		80-120	-		
Antimony, Total	96		-		80-120	-		
Arsenic, Total	102		-		80-120	-		
Barium, Total	103		-		80-120	-		
Beryllium, Total	104		-		80-120	-		
Cadmium, Total	99		-		80-120	-		
Calcium, Total	98		-		80-120	-		
Chromium, Total	96		-		80-120	-		
Cobalt, Total	94		-		80-120	-		
Copper, Total	96		-		80-120	-		
Iron, Total	99		-		80-120	-		
Lead, Total	100		-		80-120	-		
Magnesium, Total	112		-		80-120	-		
Manganese, Total	104		-		80-120	-		
Nickel, Total	94		-		80-120	-		
Potassium, Total	97		-		80-120	-		
Selenium, Total	101		-		80-120	-		
Silver, Total	93		-		80-120	-		
Sodium, Total	108		-		80-120	-		
Thallium, Total	100		-		80-120	-		
Vanadium, Total	107		-		80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated s	ample(s): 01 Batch: WG16	41899-2			
Zinc, Total	97	-	80-120	-	
Total Metals - Mansfield Lab Associated s	ample(s): 01 Batch: WG16	41901-2			
Mercury, Total	93	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date: 05/25/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG164189	9-3	QC Sample	e: L2226265-01	Clien	t ID: BATTI	ERY-TI	JNNEL	-05782022
Aluminum, Total	1.92	2	4.13	110		-	-		75-125	-		20
Antimony, Total	ND	0.5	0.485	97		-	-		75-125	-		20
Arsenic, Total	0.007	0.12	0.133	105		-	-		75-125	-		20
Barium, Total	0.033	2	2.01	99		-	-		75-125	-		20
Beryllium, Total	ND	0.05	0.050	100		-	-		75-125	-		20
Cadmium, Total	0.052	0.053	0.101	93		-	-		75-125	-		20
Calcium, Total	558	10	572	140	Q	-	-		75-125	-		20
Chromium, Total	0.005J	0.2	0.189	94		-	-		75-125	-		20
Cobalt, Total	0.048	0.5	0.476	86		-	-		75-125	-		20
Copper, Total	0.004J	0.25	0.244	98		-	-		75-125	-		20
Iron, Total	7.66	1	8.73	107		-	-		75-125	-		20
Lead, Total	0.010	0.53	0.479	88		-	-		75-125	-		20
Magnesium, Total	108	10	124	160	Q	-	-		75-125	-		20
Manganese, Total	5.42	0.5	6.01	118		-	-		75-125	-		20
Nickel, Total	0.495	0.5	0.928	87		-	-		75-125	-		20
Potassium, Total	256	10	267	110		-	-		75-125	-		20
Selenium, Total	0.004J	0.12	0.134	112		-	-		75-125	-		20
Silver, Total	ND	0.05	0.048	96		-	-		75-125	-		20
Sodium, Total	490	10	525	350	Q	-	-		75-125	-		20
Thallium, Total	0.009J	0.12	0.107	89		-	-		75-125	-		20
Vanadium, Total	0.008J	0.5	0.541	108		-	-		75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits R	RPD PD Limits
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch	ID: WG1641899-3	QC Sample	: L2226265-01	Client ID: BATTER	Y-TUNNEL-05782022
Zinc, Total	3.86	0.5	4.42	112	-	-	75-125	- 20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch	ID: WG1641901-3	QC Sample	: L2226265-01	Client ID: BATTER	Y-TUNNEL-05782022
Mercury, Total	0.00011J	0.005	0.00464	93	-	-	75-125	- 20

Lab Duplicate Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL Lab Number: L2226265

05/25/22 Report Date:

arameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1641899-	4 QC Sample:	L2226265-01	Client ID: B	ATTERY-TU	INNEL-05782022
Aluminum, Total	1.92	1.98	mg/l	3		20
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.007	0.003J	mg/l	NC		20
Barium, Total	0.033	0.034	mg/l	3		20
Beryllium, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.052	0.054	mg/l	5		20
Calcium, Total	558	580	mg/l	4		20
Chromium, Total	0.005J	0.005J	mg/l	NC		20
Cobalt, Total	0.048	0.050	mg/l	3		20
Copper, Total	0.004J	0.003J	mg/l	NC		20
Iron, Total	7.66	7.90	mg/l	3		20
Lead, Total	0.010	0.009J	mg/l	NC		20
Magnesium, Total	108	115	mg/l	6		20
Manganese, Total	5.42	5.61	mg/l	3		20
Nickel, Total	0.495	0.516	mg/l	4		20
Potassium, Total	256	264	mg/l	3		20
Selenium, Total	0.004J	0.009J	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Thallium, Total	0.009J	0.011J	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

 Lab Number:
 L2226265

 Report Date:
 05/25/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG16418	99-4 QC Sample:	L2226265-01	Client ID:	BATTERY-TUNNEL-05782022
Vanadium, Total	0.008J	0.008J	mg/l	NC	20
Zinc, Total	3.86	4.06	mg/l	5	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG16418	99-4 QC Sample:	L2226265-01	Client ID:	BATTERY-TUNNEL-05782022
Sodium, Total	490	499	mg/l	2	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG16419	01-4 QC Sample:	L2226265-01	Client ID:	BATTERY-TUNNEL-05782022
Mercury, Total	0.00011J	0.00018J	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial_No:05252215:12

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

SAMPLE RESULTS

Lab ID: L2226265-01 Date Collected: 05/18/22 09:15

Client ID: BATTERY-TUNNEL-05782022 Date Received: 05/18/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal)								
Cyanide, Total	0.334		mg/l	0.005	0.001	1	05/24/22 10:50	05/24/22 13:38	1,9010C/9012B	CS
Nitrogen, Ammonia	62.2		mg/l	3.75	1.20	50	05/24/22 16:26	05/24/22 17:59	44,350.1	AT

Serial_No:05252215:12

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for s	ample(s): 01	Batch:	WG16	42100-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.024	1	05/24/22 16:26	05/24/22 17:24	44,350.1	AT
General Chemistry - V	Vestborough Lab for s	ample(s): 01	Batch:	WG16	42156-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/24/22 10:50	05/24/22 13:23	1,9010C/9012	2B CS

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Parameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01 Ba	atch: WG1642100-2				
Nitrogen, Ammonia	98	-	90-110	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01 Ba	atch: WG1642156-2	WG1642156-3			
Cyanide, Total	107	105	85-115	2		20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number:

BATTERY TUNNEL

Lab Number:

L2226265

Report Date:

05/25/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recover	y Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westbor	rough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG16421	00-4	QC Sample: L	2224612 [.]	-03 Client	ID: MS	Samp	е
Nitrogen, Ammonia	0.027J	4	3.36	84	Q	-	-		90-110	-		20
General Chemistry - Westbor Sample	rough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG16421	56-4 W	/G1642156-5	QC Sam	ple: L22250	34-08	Client	ID: MS
Cyanide, Total	ND	0.2	0.213	106		0.102	51	Q	80-120	70	Q	20

L2226265

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name: RITC**

05/25/22 Project Number: BATTERY TUNNEL Report Date:

Parameter	Native Sample	Duplicate Sam	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01 QC Batch ID:	WG1642100-3	QC Sample: L22	24612-03	Client ID:	DUP Sample
Nitrogen, Ammonia	0.027J	ND	mg/l	NC		20

Serial_No:05252215:12

Project Name: RITC Lab Number: L2226265 **Project Number:** BATTERY TUNNEL

Report Date: 05/25/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2226265-01A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2226265-01B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2226265-01C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2226265-01D	Amber 120ml unpreserved	Α	7	7	2.2	Υ	Absent		NYTCL-8082-LVI(365)
L2226265-01E	Amber 120ml unpreserved	Α	7	7	2.2	Υ	Absent		NYTCL-8082-LVI(365)
L2226265-01F	Plastic 250ml NaOH preserved	Α	>12	>12	2.2	Υ	Absent		TCN-9010(14)
L2226265-01G	Plastic 250ml HNO3 preserved	A	<2	<2	2.2	Υ	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),AL-TI(180),TL-TI(180),NI-TI(180),CR- TI(180),SB-TI(180),ZN-TI(180),SE-TI(180),CU- TI(180),PB-TI(180),V-TI(180),CO-TI(180),MG- TI(180),MN-TI(180),FE-TI(180),HG-T(28),CA- TI(180),CD-TI(180),NA-TI(180),K-TI(180)
L2226265-01H	Amber 250ml unpreserved	Α	7	7	2.2	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2226265-01I	Amber 250ml unpreserved	Α	7	7	2.2	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2226265-01J	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.2	Υ	Absent		NH3-350(28)
L2226265-01K	Plastic 950ml unpreserved	Α	7	7	2.2	Υ	Absent		ARCHIVE()

Project Name: RITC Lab Number: L2226265

Project Number: BATTERY TUNNEL Report Date: 05/25/22

GLOSSARY

Acronyms

EPA

LOQ

MS

NP

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2226265Project Number:BATTERY TUNNELReport Date:05/25/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial p.H.: As it participe to Sample Receipt & Container Information section of the report. Initial p.H. reflects p.H. of container determined up.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2226265Project Number:BATTERY TUNNELReport Date:05/25/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:05252215:12

Project Name:RITCLab Number:L2226265Project Number:BATTERY TUNNELReport Date:05/25/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05252215:12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Project Location: 3875	Albany, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Fonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: RITC Project Location: 38 15 RIVER ROAD Project # BATTERY TUNNEL				Date Rec'd in Lab 5/19/22 Deliverables ASP-A ASP-B EQUIS (1 File) EQUIS (4 File)						ALPHA Job # L22265 Billing Information Same as Client Info			
Client Information	1 5 16 W = 4 4 1			EL				Othe		West State	ALC: N		100	THE STATE OF STATE OF	Services (1955)	
Address: AUI A 40	LENGINEEUN	(Use Project name as Pr	oject#)				DODGENO		Requ	ireme			180	Disposal Site	Substitution of the Same	
HERNDON VA , 2	ASIC DE SUITE	Project Manager: UOH:	IN DUMUE					NY TO	ogs Standa	-de	×	NY Pa		Please identify b applicable dispo		f
Phone: 585-734	corr	Turn-Around Time	STATE OF THE PARTY OF		TOTAL SEC	- 1 × 1 × 1 ×			standa		님	NY CF	-51			
Fax: john black Email: roxanne b	icx@inventume	Rush (only if pre approved)		Due Date # of Days		1102.000		NY Ur	restrict Sewer [ed Us		Other		Disposal Facility NJ Other:	NA NA	
These samples have be							ANA	LYSIS					v	Sample Filtra	tion	T
Other project specific		nents:					8260	9012B	747	ONIA BSD.	ASBESTOS IN WATER			Done Lab to do Preservation Lab to do		t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection	Sample	Sampler's	بدا	57	MERC	AMMO	33			The second second	ATTACON NO.	t
			Date Time Matrix Initials			155	FF	子の	4	5			Sample Specific	Comments	8	
26265 1	BATTERY-TUN	NEL-05182022	5/18/22	9:15	WA	RB	×	×	×	×	×					13
												_				+
				1 8												+
																+
				<u></u>												\top
																T
													9			
Preservative Code:	Container Code															
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			2500	tainer Type								and complet not be logge turnaround t	ime clock will	can I not
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30-	POH C = Cube PaHSO ₄ O = Other Pags ₂ O ₃ E = Encore D = BOD Bottle C = Cube Relinquished By: Relinquished By:				77.			Received By: UM FOUY (AAU)					7:02 0:03			G S IA'S

EMSL Analytical, Inc.

490 Rowley Road Depew, NY 14043 Phone/Fax: (716) 651-0030 / (716) 651-0394 http://www.EMSL.com / buffalolab@emsl.com EMSL Order ID: 142201832 Customer ID: ALPH55

Customer PO: Project ID:

Attn: Sub Reports

Alpha Analytical, Inc. 8 Walkup Drive Westborough, MA 01581 Phone:

Fax: (508) 898-9193 Received: 05/18/2022 Analyzed: 05/25/2022

Proj: L2226265

Test Report: Determination of Asbestos Structures ≥ 0.5 μm & > 10μm in Water Performed by the 100.2 Method (EPA 600/R-94/134)

ASBESTOS

Sample ID Client / EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered	Effective Filter Area	Area Analyzed		Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration	Confidence Limits
		(ml)	(mm²)	(mm²)				MFI	(million fibers per	liter)
Battery-Tunnel - 05182022 142201832-0001	5/19/2022 07:32 AM	0.10	1288	0.2620	≥ 0.5 µm	None Detected	ND	49.00	<49.00	0.00 - 180.00
142201002-0001					> 10 µm only	None Detected	ND	49.00	<49.00	0.00 - 180.00

Collection Date/Time: 05/18/2022 09:15 AM

Due to the excessive particulate, the analytical sensitivity of 0.2 MFL as required by the method was not reached.

Analyst(s)
Tom Hanes (1)

honda Mc Lee

Rhonda McGee, Laboratory Manager or Other Approved Signatory

Any questions please contact Rhonda McGee.

Initial report from: 05/25/2022 13:36:33

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection and containers provided by the client, acceptable bottle blank level is defined as ≤0.01MFL>10um. ND=None Detected. No Fibers Detected: the value will be reported as less than 369% of the concentration equivalent to one fiber. 1 to 4 fibers: The result will be reported as less than the corresponding upper 95% confidence interval and the Poisson 95% confidence interval will be reported on the basis of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting. When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted.

Samples analyzed by EMSL Analytical, Inc. Depew, NY NYS ELAP 11606

ANALYTICAL REPORT

Lab Number: L2228679

Client: Inventum Engineering

481 Carlisle Drive #202 Herndon, NY 20170

ATTN: Todd Waldrop
Phone: (571) 752-6562

Project Name: RITC

Project Number: BATTERY TUNNEL

Report Date: 06/07/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2228679-01 BATTERY-TUNNEL-06012022 WATER 3875 RIVER RD. Collection Date/Time Receive Date

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:06072215:15

Project Name:RITCLab Number:L2228679Project Number:BATTERY TUNNELReport Date:06/07/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Asbestos was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Nitrogen, Ammonia

The WG1645628-4 MS recovery for nitrogen, ammonia (0%), performed on L2228679-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 06/07/22

ORGANICS

VOLATILES

Serial_No:06072215:15

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22

Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/06/22 09:29

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.26	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Serial_No:06072215:15

MDL

Dilution Factor

Project Name: Lab Number: **RITC** L2228679

Project Number: Report Date: **BATTERY TUNNEL** 06/07/22

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Field Prep: Not Specified

Result

Sample Location: 3875 RIVER RD.

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Oilito			Dilution i dotoi	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	21		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	119	70-130	

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/06/22 09:04

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough La	o for sample(s): 01	Batch:	WG1647489-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/06/22 09:04

Analyst: PD

A-Dichlorobenzene ND	Parameter	Result	Qualifier Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 <	olatile Organics by GC/MS - W	estborough Lab	for sample(s): 01	Batch:	WG1647489-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isoproylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 <	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 <td>Methyl tert butyl ether</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td>	Methyl tert butyl ether	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0	p/m-Xylene	ND	ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70	o-Xylene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 61 Freon-113 ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
Isopropylbenzene	1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27
	1,4-Dioxane	ND	ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70
	Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/06/22 09:04

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1647489-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	123	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	119	70-130

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG1	647489-3	WG1647489-4			
Methylene chloride	110		120		70-130	9		20
1,1-Dichloroethane	120		120		70-130	0		20
Chloroform	120		120		70-130	0		20
Carbon tetrachloride	110		100		63-132	10		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	99		95		63-130	4		20
1,1,2-Trichloroethane	100		100		70-130	0		20
Tetrachloroethene	96		94		70-130	2		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	120		120		62-150	0		20
1,2-Dichloroethane	110		120		70-130	9		20
1,1,1-Trichloroethane	110		110		67-130	0		20
Bromodichloromethane	100		110		67-130	10		20
trans-1,3-Dichloropropene	98		95		70-130	3		20
cis-1,3-Dichloropropene	100		98		70-130	2		20
Bromoform	85		79		54-136	7		20
1,1,2,2-Tetrachloroethane	110		100		67-130	10		20
Benzene	110		110		70-130	0		20
Toluene	110		100		70-130	10		20
Ethylbenzene	110		110		70-130	0		20
Chloromethane	100		100		64-130	0		20
Bromomethane	76		82		39-139	8		20
Vinyl chloride	130		130		55-140	0		20

Project Name: RITC

Project Number:

BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 01	I Batch: WG	1647489-3	WG1647489-4		
Chloroethane	170	Q	170	Q	55-138	0	20
1,1-Dichloroethene	120		110		61-145	9	20
trans-1,2-Dichloroethene	110		120		70-130	9	20
Trichloroethene	110		100		70-130	10	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	100		99		70-130	1	20
1,4-Dichlorobenzene	100		99		70-130	1	20
Methyl tert butyl ether	93		95		63-130	2	20
p/m-Xylene	105		105		70-130	0	20
o-Xylene	105		105		70-130	0	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	105		105		70-130	0	20
Dichlorodifluoromethane	110		110		36-147	0	20
Acetone	150	Q	140		58-148	7	20
Carbon disulfide	120		120		51-130	0	20
2-Butanone	120		120		63-138	0	20
4-Methyl-2-pentanone	91		84		59-130	8	20
2-Hexanone	96		94		57-130	2	20
Bromochloromethane	100		110		70-130	10	20
1,2-Dibromoethane	100		99		70-130	1	20
1,2-Dibromo-3-chloropropane	85		87		41-144	2	20
Isopropylbenzene	100		99		70-130	1	20
1,2,3-Trichlorobenzene	86		89		70-130	3	20

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	•		Batch: WG		WG1647489-4	=			
1,2,4-Trichlorobenzene	90		88		70-130	2		20	
Methyl Acetate	110		110		70-130	0		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	104		108		56-162	4		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	100		98		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	110	112	70-130
Toluene-d8	104	105	70-130
4-Bromofluorobenzene	95	97	70-130
Dibromofluoromethane	104	107	70-130

SEMIVOLATILES

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 06/03/22 00:09

Analytical Method: 1,8270D Extraction Date: 06/03/22 00:09
Analytical Date: 06/03/22 14:33

Analyst: CMM

3,3 - Dichlorobenzidine ND ug/l 5.0 0.85 1 2,4 - Dinitrotoluene ND ug/l 5.0 0.38 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.37 1 4 - Chiorophenyl phenyl ether ND ug/l 2.0 0.80 1 4 - Chiorophenyl phenyl ether ND ug/l 2.0 0.83 1 Bis(2-chloriostroproyl)ether ND ug/l 2.0 0.83 1 Bis(2-chloroethoxylmethane ND ug/l 5.0 1.5 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.61 1 Isophrone ND ug/l 5.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 NItrobenzene ND ug/l 2.0 0.66 1 n-Nitrobenzene ND ug/l 5.0 0.66 1 n-Nitrobenzene ND ug/l 5.0	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3 - Dichlorobenzidine ND ug/l 5.0 0.85 1 2,4 - Dinitrotoluene ND ug/l 5.0 0.38 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.37 1 4 - Chiorophenyl phenyl ether ND ug/l 2.0 0.80 1 4 - Bromophenyl phenyl ether ND ug/l 2.0 0.83 1 8 Bis (2-chloriosthosyl) ether ND ug/l 2.0 0.83 1 8 Bis (2-chloriosthosyl) ether ND ug/l 2.0 1.8 1 8 Bis (2-chloriosthosyl) ether ND ug/l 5.0 1.5 1 1 Bis (2-chloriosthosyl) ether ND ug/l 5.0 0.61 1 1 Bis (2-chloriosthosyl) ethers ND ug/l 5.0 0.61 1 1 Sophorone ND ug/l 5.0 0.66 1 NDPA/DPA ND ug/l 2.0 0.66 1 NDPA/DPA ND <	Semivolatile Organics by GC/MS - W	estborough Lab					
2,4-Dinitrotoluene ND ug/l 5.0 0.38 1 2,6-Dinitrotoluene ND ug/l 5.0 0.37 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.80 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.63 1 Bis(2-chlorosporyl)ether ND ug/l 2.0 1.8 1 Bis(2-chlorosporyl)ether ND ug/l 5.0 1.5 1 Bis(2-chlorosporyl)ether ND ug/l 5.0 1.6 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.61 1 Isophorone ND ug/l 5.0 0.66 1 Nitrobenzane ND ug/l 2.0 0.66 1 NItrobenzane ND ug/l 5.0 0.77 1 Bis(2-chlorethexyl)phthalate ND ug/l 5.0 0.77 1 Bis(2-chlorethexyl)phthalate ND ug/l <t< td=""><td>Bis(2-chloroethyl)ether</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td>0.88</td><td>1</td></t<>	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.88	1
2,6-Dinitrotoluene ND ug/l 5.0 0.37 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.80 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.63 1 Bis(2-chlorospropylether ND ug/l 2.0 1.8 1 Bis(2-chlorospropylether ND ug/l 2.0 1.5 1 Bis(2-chlorospropylether ND ug/l 5.0 1.5 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.66 1 Isophorone ND ug/l 5.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 NDPA/DPA ND ug/l 2.0 0.65 1 NDPA/DPA ND ug/l 5.0 0.77 1 Bis(2-chlyflexyl)phthalate ND ug/l 5.0 0.77 1 Butyl benzyl phthalate ND ug/l 5.0 <th< td=""><td>3,3'-Dichlorobenzidine</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>0.85</td><td>1</td></th<>	3,3'-Dichlorobenzidine	ND		ug/l	5.0	0.85	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.80 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.63 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1.8 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 1.5 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 1.5 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 1.5 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.66 1 ND ug/l 5.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 NITrobenzene ND ug/l 2.0 0.65 1 NIPPA/DPA ND ug/l 2.0 0.65 1 N-Nitrosodi-n-propylamine ND ug/l 5.0 0.77 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.77 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.58 1 Di-n-butyl phthalate ND ug/l 5.0 0.58 1 Di-n-butyl phthalate ND ug/l 5.0 0.58 1 Di-n-butyl phthalate ND ug/l 5.0 0.58 1 Di-n-cytylphthalate ND ug/l 5.0 0.66 1 Dimethyl phthalate ND ug/l 5.0 0.66 1 Dimethyl phthalate ND ug/l 5.0 0.66 1 Sighenyl ND ug/l 5.0 0.65 1	2,4-Dinitrotoluene	ND		ug/l	5.0	0.38	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.63 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1.8 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 1.5 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 1.5 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.61 1 Isophorone ND ug/l 5.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 Nitrobenzene ND ug/l 2.0 0.66 1 NDP-A/DPA ND ug/l 2.0 0.65 1 NDP-A/DPA ND ug/l 5.0 0.77 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.77 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.77 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.58 1 Di-n-butylphthalate ND ug/l 5.0 0.58 1 Di-n-butylphthalate ND ug/l 5.0 0.58 1 Di-n-octylphthalate ND ug/l 5.0 0.58 1 Dimethyl phthalate ND ug/l 5.0 0.4 1 Dimethyl phthalate ND ug/l 5.0 0.5 1 Dimethyl phthalate ND ug/l 5.0 0.65 1 Biphenyl ND ug/l 5.0 0.65 1 Biphenyl ND ug/l 5.0 0.65 1 C-thloroaniline ND ug/l 5.0 0.65 1 C-thloroaniline ND ug/l 5.0 0.65 1 C-thloroaniline ND ug/l 5.0 0.52 1 C-thloroaniline ND ug/l 5.0 0.52 1 C-thloroaniline ND ug/l 5.0 0.52 1 C-thloroaniline ND ug/l 5.0 0.55 1 C-thloroaniline ND ug/l 5.0 0.58 1 C-thloroaniline ND ug/l 5.0 0.59 1 C-thloroaniline ND ug/l 5.0 0.58 1 C-thloroaniline ND ug/l 5.0 0.59 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.37	1
Bis(2-chloroisopropyl)ether ND Ug/l 2.0 1.8 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.80	1
Bis(2-chloroethoxy)methane ND Ug/l 5.0 1.5 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.63	1
Hexachlorocyclopentadiene ND ug/l 20 0.61 1 1 1 1 1 1 1 1 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	1.8	1
Sophorone ND ug/l 5.0 0.66 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	1.5	1
NITrobenzene ND ug/l 2.0 0.66 1 NDPA/DPA ND ug/l 2.0 0.65 1 NDPA/DPA ND ug/l 5.0 0.77 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.77 1 Butyl benzyl phthalate ND ug/l 5.0 0.58 1 Di-n-butylphthalate ND ug/l 5.0 0.58 1 Di-nbutylphthalate ND ug/l 5.0 0.58 1 Dimethyl phthalate ND ug/l 5.0 0.64 1 Coloroniline ND ug/l 5.0 0.65 1 Coloroniline ND ug/l 5.0 0.65 1 Coloroniline ND ug/l 5.0 0.52 1 Coloroniline ND ug/l 5.0 0.57 1 Coloroniline ND ug/l 5.0 0.57 1 Coloroniline ND ug/l 5.0 0.58 1	Hexachlorocyclopentadiene	ND		ug/l	20	0.61	1
NDPA/DPA ND ug/l 2.0 0.65 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.77 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 2.2 1 Di-n-butylphthalate ND ug/l 5.0 0.58 1 Di-n-butylphthalate ND ug/l 5.0 2.4 1 Di-n-butylphthalate ND ug/l 5.0 4.3 1 Di-n-butylphthalate ND ug/l 5.0 4.3 1 Di-n-butylphthalate ND ug/l 5.0 4.3 1 Diethyl phthalate ND ug/l 5.0 4.3 1 Biphenyl ND ug/l 5.0 4.4 1 4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.57 1	Isophorone	ND		ug/l	5.0	0.66	1
ND Ug/l 5.0 0.77 1	Nitrobenzene	ND		ug/l	2.0	0.66	1
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.65	1
Butyl benzyl phthalate ND ug/l 5.0 2.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.77	1
Di-n-butylphthalate ND ug/l 5.0 0.58 1 Di-n-octylphthalate ND ug/l 5.0 2.4 1 Diethyl phthalate ND ug/l 5.0 4.3 1 Dimethyl phthalate ND ug/l 5.0 4.4 1 Biphenyl ND ug/l 2.0 0.64 1 4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.98 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 2.4 1 Diethyl phthalate ND ug/l 5.0 4.3 1 Dimethyl phthalate ND ug/l 5.0 4.4 1 Biphenyl ND ug/l 2.0 0.64 1 4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.98 1 Acetophenone ND ug/l 5.0 0.98 1	Butyl benzyl phthalate	ND		ug/l	5.0	2.2	1
Diethyl phthalate ND ug/l 5.0 4.3 1 Dimethyl phthalate ND ug/l 5.0 4.4 1 Biphenyl ND ug/l 2.0 0.64 1 4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	Di-n-butylphthalate	ND		ug/l	5.0	0.58	1
Dimethyl phthalate ND ug/l 5.0 4.4 1 Biphenyl ND ug/l 2.0 0.64 1 4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	Di-n-octylphthalate	ND		ug/l	5.0	2.4	1
Biphenyl ND ug/l 2.0 0.64 1	Diethyl phthalate	ND		ug/l	5.0	4.3	1
4-Chloroaniline ND ug/l 5.0 0.65 1 2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.57 1 6-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	Dimethyl phthalate	ND		ug/l	5.0	4.4	1
2-Nitroaniline ND ug/l 5.0 0.52 1 3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	Biphenyl	ND		ug/l	2.0	0.64	1
3-Nitroaniline ND ug/l 5.0 0.57 1 4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	4-Chloroaniline	ND		ug/l	5.0	0.65	1
4-Nitroaniline ND ug/l 5.0 0.58 1 Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	2-Nitroaniline	ND		ug/l	5.0	0.52	1
Dibenzofuran ND ug/l 2.0 0.82 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	3-Nitroaniline	ND		ug/l	5.0	0.57	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.62 1 Acetophenone ND ug/l 5.0 0.98 1	4-Nitroaniline	ND		ug/l	5.0	0.58	1
Acetophenone ND ug/l 5.0 0.98 1	Dibenzofuran	ND		ug/l	2.0	0.82	1
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.62	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.49 1	Acetophenone	ND		ug/l	5.0	0.98	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.49	1

Project Name: Lab Number: **RITC** L2228679

Project Number: Report Date: **BATTERY TUNNEL** 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Field Prep: Not Specified

Sample Location: 3875 RIVER RD.

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	tborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.41	1	
2-Chlorophenol	ND		ug/l	2.0	0.40	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.53	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.1	1	
2-Nitrophenol	ND		ug/l	10	0.46	1	
4-Nitrophenol	ND		ug/l	10	1.1	1	
2,4-Dinitrophenol	ND		ug/l	20	3.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	5.4	1	
Phenol	ND		ug/l	5.0	1.3	1	
2-Methylphenol	ND		ug/l	5.0	1.1	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.55	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.38	1	
Carbazole	ND		ug/l	2.0	0.76	1	
Atrazine	ND		ug/l	10	1.7	1	
Benzaldehyde	ND		ug/l	5.0	0.90	1	
Caprolactam	ND		ug/l	10	1.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.47	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	61	21-120	
Phenol-d6	43	10-120	
Nitrobenzene-d5	88	23-120	
2-Fluorobiphenyl	70	15-120	
2,4,6-Tribromophenol	110	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 06/03/22 00:12
Analytical Date: 06/03/22 19:30

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	b				
Acenaphthene	0.53		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	1.0		ug/l	0.10	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	0.31		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.36		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.14		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.40		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.13		ug/l	0.10	0.04	1
Chrysene	0.47		ug/l	0.10	0.04	1
Acenaphthylene	0.19		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.14		ug/l	0.10	0.04	1
Fluorene	0.25		ug/l	0.10	0.04	1
Phenanthrene	0.45		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.05	J	ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.16		ug/l	0.10	0.04	1
Pyrene	0.71		ug/l	0.10	0.04	1
2-Methylnaphthalene	0.14		ug/l	0.10	0.05	1
Pentachlorophenol	0.38	J	ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

•

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	64	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	86	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	96	10-120
4-Terphenyl-d14	89	41-149

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 06/03/22 09:23 Extraction Date: 06/03/22 00:09

Analyst: CMM

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for sample(s): 01 Batch:	WG1646052-1
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.88
3,3'-Dichlorobenzidine	ND	ug/l	5.0	0.85
2,4-Dinitrotoluene	ND	ug/l	5.0	0.38
2,6-Dinitrotoluene	ND	ug/l	5.0	0.37
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.80
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.63
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	1.8
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	1.5
Hexachlorocyclopentadiene	ND	ug/l	20	0.61
Isophorone	ND	ug/l	5.0	0.66
Nitrobenzene	ND	ug/l	2.0	0.66
NDPA/DPA	ND	ug/l	2.0	0.65
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.77
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.5
Butyl benzyl phthalate	ND	ug/l	5.0	2.2
Di-n-butylphthalate	ND	ug/l	5.0	0.58
Di-n-octylphthalate	ND	ug/l	5.0	2.4
Diethyl phthalate	ND	ug/l	5.0	4.3
Dimethyl phthalate	ND	ug/l	5.0	4.4
Biphenyl	ND	ug/l	2.0	0.64
4-Chloroaniline	ND	ug/l	5.0	0.65
2-Nitroaniline	ND	ug/l	5.0	0.52
3-Nitroaniline	ND	ug/l	5.0	0.57
4-Nitroaniline	ND	ug/l	5.0	0.58
Dibenzofuran	ND	ug/l	2.0	0.82
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.62
Acetophenone	ND	ug/l	5.0	0.98
2,4,6-Trichlorophenol	ND	ug/l	5.0	0.49
p-Chloro-m-cresol	ND	ug/l	2.0	0.41

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/03/22 09:23

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 06/03/22 00:09

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	S - Westborough	Lab for sa	ample(s):	01	Batch:	WG1646052-1	
2-Chlorophenol	ND		ug/l		2.0	0.40	
2,4-Dichlorophenol	ND		ug/l		5.0	0.53	
2,4-Dimethylphenol	ND		ug/l		5.0	1.1	
2-Nitrophenol	ND		ug/l		10	0.46	
4-Nitrophenol	ND		ug/l		10	1.1	
2,4-Dinitrophenol	ND		ug/l		20	3.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	5.4	
Phenol	ND		ug/l		5.0	1.3	
2-Methylphenol	ND		ug/l		5.0	1.1	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.55	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.38	
Carbazole	ND		ug/l		2.0	0.76	
Atrazine	ND		ug/l		10	1.7	
Benzaldehyde	ND		ug/l		5.0	0.90	
Caprolactam	ND		ug/l		10	1.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.47	

Surrogate	%Recovery Q	Acceptance ualifier Criteria
	-	
2-Fluorophenol	61	21-120
Phenol-d6	45	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	101	10-120
4-Terphenyl-d14	75	41-149

L2228679

Project Name: RITC Lab Number:

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 06/03/22 18:40

Analyst: JJW

Extraction Method:	EPA 3510C
Extraction Date:	06/03/22 00:12

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab	for sampl	e(s): 01	Batch: WG164605	3-1
Acenaphthene	ND		ug/l	0.10	0.04	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	
Fluoranthene	ND		ug/l	0.10	0.04	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	
Naphthalene	ND		ug/l	0.10	0.04	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	
Chrysene	ND		ug/l	0.10	0.04	
Acenaphthylene	ND		ug/l	0.10	0.04	
Anthracene	ND		ug/l	0.10	0.04	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	
Fluorene	ND		ug/l	0.10	0.04	
Phenanthrene	0.05	J	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	
Pyrene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.05	
Pentachlorophenol	ND		ug/l	0.80	0.22	
Hexachlorobenzene	ND		ug/l	0.80	0.03	
Hexachloroethane	ND		ug/l	0.80	0.03	

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 06/03/22 18:40 Extraction Date: 06/03/22 00:12

Analyst: JJW

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):01Batch: WG1646053-1

Surrogate	%Recovery Qualif	Acceptance ier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	80	10-120
4-Terphenyl-d14	78	41-149

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	: 01 Batch:	WG1646052-2	2 WG1646052-3			
Bis(2-chloroethyl)ether	68		68		40-140	0	30	
3,3'-Dichlorobenzidine	82		76		40-140	8	30	
2,4-Dinitrotoluene	74		69		48-143	7	30	
2,6-Dinitrotoluene	72		70		40-140	3	30	
4-Chlorophenyl phenyl ether	66		63		40-140	5	30	
4-Bromophenyl phenyl ether	76		72		40-140	5	30	
Bis(2-chloroisopropyl)ether	57		58		40-140	2	30	
Bis(2-chloroethoxy)methane	72		71		40-140	1	30	
Hexachlorocyclopentadiene	42		43		40-140	2	30	
Isophorone	74		72		40-140	3	30	
Nitrobenzene	78		80		40-140	3	30	
NDPA/DPA	72		68		40-140	6	30	
n-Nitrosodi-n-propylamine	73		72		29-132	1	30	
Bis(2-ethylhexyl)phthalate	82		79		40-140	4	30	
Butyl benzyl phthalate	85		79		40-140	7	30	
Di-n-butylphthalate	87		81		40-140	7	30	
Di-n-octylphthalate	86		82		40-140	5	30	
Diethyl phthalate	75		71		40-140	5	30	
Dimethyl phthalate	70		66		40-140	6	30	
Biphenyl	64		63		40-140	2	30	
4-Chloroaniline	59		56		40-140	5	30	
2-Nitroaniline	90		83		52-143	8	30	
3-Nitroaniline	74		70		25-145	6	30	

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

arameter	LCS %Recovery Qu	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associated s	sample(s): 01 Batch:	WG1646052-2 WG1646052	-3	
4-Nitroaniline	84	80	51-143	5	30
Dibenzofuran	70	67	40-140	4	30
1,2,4,5-Tetrachlorobenzene	56	54	2-134	4	30
Acetophenone	70	70	39-129	0	30
2,4,6-Trichlorophenol	74	68	30-130	8	30
p-Chloro-m-cresol	86	79	23-97	8	30
2-Chlorophenol	70	71	27-123	1	30
2,4-Dichlorophenol	74	73	30-130	1	30
2,4-Dimethylphenol	79	75	30-130	5	30
2-Nitrophenol	90	90	30-130	0	30
4-Nitrophenol	63	57	10-80	10	30
2,4-Dinitrophenol	39	40	20-130	3	30
4,6-Dinitro-o-cresol	60	60	20-164	0	30
Phenol	44	41	12-110	7	30
2-Methylphenol	70	69	30-130	1	30
3-Methylphenol/4-Methylphenol	68	65	30-130	5	30
2,4,5-Trichlorophenol	73	70	30-130	4	30
Carbazole	80	75	55-144	6	30
Atrazine	69	66	40-140	4	30
Benzaldehyde	71	74	40-140	4	30
Caprolactam	30	27	10-130	11	30
2,3,4,6-Tetrachlorophenol	75	70	40-140	7	30

Project Name: RITC

Lab Number:

L2228679

Project Number:

BATTERY TUNNEL

Report Date:

06/07/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1646052-2 WG1646052-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	61	60	21-120
Phenol-d6	46	44	10-120
Nitrobenzene-d5	81	81	23-120
2-Fluorobiphenyl	68	65	15-120
2,4,6-Tribromophenol	107	102	10-120
4-Terphenyl-d14	82	75	41-149

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	ssociated sample(s): 01 Batch	n: WG1646053-2 WG1646	6053-3	
Acenaphthene	82	87	40-140	6	40
2-Chloronaphthalene	84	89	40-140	6	40
Fluoranthene	91	96	40-140	5	40
Hexachlorobutadiene	68	73	40-140	7	40
Naphthalene	77	82	40-140	6	40
Benzo(a)anthracene	98	100	40-140	2	40
Benzo(a)pyrene	96	103	40-140	7	40
Benzo(b)fluoranthene	95	93	40-140	2	40
Benzo(k)fluoranthene	89	102	40-140	14	40
Chrysene	79	82	40-140	4	40
Acenaphthylene	91	97	40-140	6	40
Anthracene	85	92	40-140	8	40
Benzo(ghi)perylene	92	100	40-140	8	40
Fluorene	88	92	40-140	4	40
Phenanthrene	79	84	40-140	6	40
Dibenzo(a,h)anthracene	100	109	40-140	9	40
Indeno(1,2,3-cd)pyrene	98	108	40-140	10	40
Pyrene	92	95	40-140	3	40
2-Methylnaphthalene	79	83	40-140	5	40
Pentachlorophenol	83	90	40-140	8	40
Hexachlorobenzene	68	72	40-140	6	40
Hexachloroethane	73	78	40-140	7	40

Project Name: RITC

Lab Number:

L2228679

Project Number: BATTERY TUNNEL

Report Date:

06/07/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1646053-2 WG1646053-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	68	72	21-120
Phenol-d6	49	53	10-120
Nitrobenzene-d5	85	91	23-120
2-Fluorobiphenyl	80	85	15-120
2,4,6-Tribromophenol	94	101	10-120
4-Terphenyl-d14	89	95	41-149

PCBS

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 06/03/22 00:04

Analytical Date: 06/03/22 15:38 Cleanup Method: EPA 3665A Analyst: JM Cleanup Date: 06/03/22

Cleanup Method: EPA 3660B Cleanup Date: 06/03/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Arcolor 1016	ND		/1	0.092	0.012	4	۸			
Aroclor 1016	ND		ug/l	0.083	0.013	ı	Α			
Aroclor 1221	ND		ug/l	0.083	0.018	1	Α			
Aroclor 1232	ND		ug/l	0.083	0.038	1	Α			
Aroclor 1242	ND		ug/l	0.083	0.030	1	Α			
Aroclor 1248	ND		ug/l	0.083	0.038	1	Α			
Aroclor 1254	ND		ug/l	0.083	0.014	1	Α			
Aroclor 1260	ND		ug/l	0.083	0.029	1	Α			
Aroclor 1262	ND		ug/l	0.083	0.028	1	Α			
Aroclor 1268	ND		ug/l	0.083	0.026	1	Α			
PCBs, Total	ND		ug/l	0.083	0.013	1	Α			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	55		30-150	В
2,4,5,6-Tetrachloro-m-xylene	68		30-150	Α
Decachlorobiphenyl	60		30-150	Α

L2228679

Project Name: RITC Lab Number:

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 06/03/22 16:09

Analyst: JM

Extraction Method: EPA 3510C
Extraction Date: 06/03/22 00:04
Cleanup Method: EPA 3665A
Cleanup Date: 06/03/22
Cleanup Method: EPA 3660B
Cleanup Date: 06/03/22

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1646051	-1
Aroclor 1016	ND		ug/l	0	.083	0.013	Α
Aroclor 1221	ND		ug/l	0	.083	0.018	А
Aroclor 1232	ND		ug/l	0	.083	0.038	А
Aroclor 1242	ND		ug/l	0	.083	0.030	Α
Aroclor 1248	ND		ug/l	0	.083	0.038	Α
Aroclor 1254	ND		ug/l	0	.083	0.014	А
Aroclor 1260	ND		ug/l	0	.083	0.029	А
Aroclor 1262	ND		ug/l	0	.083	0.028	А
Aroclor 1268	ND		ug/l	0	.083	0.026	Α
PCBs, Total	ND		ug/l	0	.083	0.013	Α

		Acceptano	e
Surrogate	%Recovery Qualifi	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75	30-150	В
Decachlorobiphenyl	60	30-150	В
2,4,5,6-Tetrachloro-m-xylene	75	30-150	Α
Decachlorobiphenyl	64	30-150	Α

Project Name: RITC

Lab Number:

L2228679

06/07/22

Project Number:

BATTERY TUNNEL

Report Date:

	LCS		LO	CSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westborou	ugh Lab Associa	ated sample(s)	: 01	Batch:	WG1646051-2	WG1646051-3	3			
Aroclor 1016	77			79		40-140	2		50	Α
Aroclor 1260	75			75		40-140	1		50	Α

Surrogate	LCS %Recovery 0	LCSD Qual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	74	78	30-150 B
Decachlorobiphenyl	55	54	30-150 B
2,4,5,6-Tetrachloro-m-xylene	75	79	30-150 A
Decachlorobiphenyl	60	59	30-150 A

METALS

Project Name: Lab Number: **RITC** L2228679 **Project Number: Report Date: BATTERY TUNNEL** 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01

Date Collected: 06/01/22 08:45 Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22

Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.235		mg/l	0.100	0.032	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Antimony, Total	ND		mg/l	0.050	0.007	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Barium, Total	0.038		mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Beryllium, Total	ND		mg/l	0.005	0.001	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Cadmium, Total	0.003	J	mg/l	0.005	0.001	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Calcium, Total	1080		mg/l	1.00	0.350	10	06/02/22 18:14	06/04/22 10:12	EPA 3005A	1,6010D	SB
Chromium, Total	0.004	J	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Cobalt, Total	0.016	J	mg/l	0.020	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Copper, Total	0.006	J	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Iron, Total	1.78		mg/l	0.050	0.009	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Lead, Total	0.010	J	mg/l	0.010	0.003	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Magnesium, Total	126		mg/l	0.100	0.015	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Manganese, Total	5.48		mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Mercury, Total	0.00009	J	mg/l	0.00020	0.00009	1	06/02/22 21:10	06/03/22 08:11	EPA 7470A	1,7470A	DMB
Nickel, Total	0.108		mg/l	0.025	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Potassium, Total	357		mg/l	2.50	0.237	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Selenium, Total	ND		mg/l	0.010	0.004	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Silver, Total	ND		mg/l	0.007	0.003	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Sodium, Total	1130		mg/l	20.0	1.20	10	06/02/22 18:14	06/04/22 10:12	EPA 3005A	1,6010D	SB
Thallium, Total	0.015	J	mg/l	0.020	0.003	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Vanadium, Total	ND		mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV
Zinc, Total	0.413		mg/l	0.050	0.002	1	06/02/22 18:14	06/03/22 18:16	EPA 3005A	1,6010D	BV

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG16	645373-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	06/02/22 21:10	06/03/22 07:17	7 1,7470A	DMB

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG16	645860-	1				
Aluminum, Total	ND	mg/l	0.100	0.032	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Antimony, Total	ND	mg/l	0.050	0.007	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Arsenic, Total	ND	mg/l	0.005	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Barium, Total	ND	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Beryllium, Total	ND	mg/l	0.005	0.001	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Cadmium, Total	ND	mg/l	0.005	0.001	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Calcium, Total	ND	mg/l	0.100	0.035	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Chromium, Total	ND	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Cobalt, Total	ND	mg/l	0.020	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Copper, Total	ND	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Iron, Total	ND	mg/l	0.050	0.009	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Lead, Total	ND	mg/l	0.010	0.003	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Magnesium, Total	ND	mg/l	0.100	0.015	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Manganese, Total	ND	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Nickel, Total	ND	mg/l	0.025	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Potassium, Total	ND	mg/l	2.50	0.237	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Selenium, Total	ND	mg/l	0.010	0.004	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Silver, Total	ND	mg/l	0.007	0.003	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Sodium, Total	ND	mg/l	2.00	0.120	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Thallium, Total	ND	mg/l	0.020	0.003	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Vanadium, Total	ND	mg/l	0.010	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV
Zinc, Total	ND	mg/l	0.050	0.002	1	06/02/22 18:14	06/03/22 15:12	1,6010D	BV

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	WG164537	73-2					
Mercury, Total	99		-		80-120	-		

Project Name:

RITC

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associat	ted sample(s): 01 Batch: WG10	645860-2			
Aluminum, Total	98	-	80-120	-	
Antimony, Total	93	-	80-120	-	
Arsenic, Total	102	-	80-120	-	
Barium, Total	101	-	80-120	-	
Beryllium, Total	100	-	80-120	-	
Cadmium, Total	96	-	80-120	-	
Calcium, Total	96	-	80-120	-	
Chromium, Total	94	-	80-120	-	
Cobalt, Total	91	-	80-120	-	
Copper, Total	98	-	80-120	-	
Iron, Total	93	-	80-120	-	
Lead, Total	97	-	80-120	-	
Magnesium, Total	98	-	80-120	-	
Manganese, Total	89	-	80-120	-	
Nickel, Total	93	-	80-120	-	
Potassium, Total	102	-	80-120	-	
Selenium, Total	99	-	80-120	-	
Silver, Total	96	-	80-120	-	
Sodium, Total	105	-	80-120	-	
Thallium, Total	95	-	80-120	-	
Vanadium, Total	97	-	80-120	-	

06/07/22

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2228679

BATTERY TUNNEL Report Date:

LCS **LCSD** %Recovery Limits %Recovery %Recovery **RPD RPD Limits Parameter** Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1645860-2 Zinc, Total 95 80-120

Project Name:

Project Number:

RITC

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	,	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG164537	3-3 WG1645373-4	QC Sample	: L2227541-02	Client ID	: MS Sample
Mercury, Total	ND	0.005	0.00481	96	0.00474	95	75-125	1	20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number: L2228679

Report Date: 06/07/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	y RPD	RPD Limits
Гotal Metals - Mansfield Lal	b Associated sar	mple(s): 01	QC Batch	ID: WG1645860	-3 WG1645860-4	QC Sample	: L2225687-05	Client ID:	MS Sample
Aluminum, Total	0.140	2	2.08	97	2.02	94	75-125	3	20
Antimony, Total	ND	0.5	0.466	93	0.468	94	75-125	0	20
Arsenic, Total	ND	0.12	0.122	102	0.123	102	75-125	1	20
Barium, Total	0.009J	2	2.02	101	1.96	98	75-125	3	20
Beryllium, Total	ND	0.05	0.051	101	0.049	98	75-125	3	20
Cadmium, Total	ND	0.053	0.050	95	0.050	94	75-125	1	20
Calcium, Total	5.86	10	15.2	93	14.8	89	75-125	3	20
Chromium, Total	ND	0.2	0.188	94	0.183	92	75-125	3	20
Cobalt, Total	ND	0.5	0.454	91	0.446	89	75-125	2	20
Copper, Total	ND	0.25	0.247	99	0.240	96	75-125	3	20
Iron, Total	0.446	1	1.36	91	1.32	87	75-125	3	20
Lead, Total	ND	0.53	0.504	95	0.502	95	75-125	0	20
Magnesium, Total	1.38	10	11.0	96	10.7	93	75-125	3	20
Manganese, Total	0.275	0.5	0.707	86	0.688	83	75-125	3	20
Nickel, Total	ND	0.5	0.461	92	0.453	91	75-125	2	20
Potassium, Total	1.32J	10	11.4	114	11.1	111	75-125	3	20
Selenium, Total	ND	0.12	0.123	102	0.122	102	75-125	1	20
Silver, Total	ND	0.05	0.047	94	0.046	93	75-125	2	20
Sodium, Total	22.4	10	32.0	96	31.1	87	75-125	3	20
Thallium, Total	ND	0.12	0.113	94	0.112	93	75-125	1	20
Vanadium, Total	ND	0.5	0.483	97	0.472	94	75-125	2	20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recover Limits	y RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG1645860-3	WG1645860-4	QC Sample	: L2225687-05	Client ID:	MS Sample
Zinc, Total	ND	0.5	0.476	95	0.468	94	75-125	2	20

INORGANICS & MISCELLANEOUS

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL **Report Date:** 06/07/22

SAMPLE RESULTS

Lab ID: L2228679-01 Date Collected: 06/01/22 08:45

Client ID: BATTERY-TUNNEL-06012022 Date Received: 06/01/22 Sample Location: 3875 RIVER RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Cyanide, Total	0.213		mg/l	0.005	0.001	1	06/06/22 14:05	06/07/22 11:00	1,9010C/9012B	KP
Nitrogen, Ammonia	165.		mg/l	3.75	1.20	50	06/02/22 14:35	06/03/22 17:41	44,350.1	AT

Project Name: RITC Lab Number: L2228679

Project Number: BATTERY TUNNEL Report Date: 06/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab	for sam	ple(s): 01	Batch:	WG16	45628-1				
Nitrogen, Ammonia	0.025	J	mg/l	0.075	0.024	1	06/02/22 14:35	06/03/22 17:38	44,350.1	AT
General Chemistry - We	estborough Lab	for sam	ple(s): 01	Batch:	WG16	47091-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/06/22 14:05	06/07/22 10:55	1,9010C/9012	2B KP

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01 Ba	atch: WG1645628-2			
Nitrogen, Ammonia	103	-	90-110	-	20
General Chemistry - Westborough Lab A	ssociated sample(s): 01 Ba	atch: WG1647091-2	WG1647091-3		
Cyanide, Total	97	102	85-115	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BATTERY TUNNEL

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery _imits	RPD	_	RPD _imits
General Chemistry - Westboro 06012022	ough Lab Asso	ciated sampl	e(s): 01	QC Batch ID: V	NG16456	28-4	QC Sample: L22	228679-01	Client II	D: BA	TTERY-	TUNNEL-
Nitrogen, Ammonia	165.	4	135	0	Q	-	-		90-110	-		20
General Chemistry - Westboro BATTERY-TUNNEL-06012022	_	ciated sampl	e(s): 01	QC Batch ID: V	WG16470	91-4 W	/G1647091-5 C	QC Sample	: L222867	'9-01	Client I	D:
Cyanide, Total	0.213	0.2	0.392	90		0.394	90		80-120	1		20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2228679

Report Date:

06/07/22

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab 06012022	Associated sample(s): 01 QC Ba	atch ID: WG1645628-3	QC Sample: L222	8679-01 Clie	ent ID: BATTERY-TUNNEL-
Nitrogen, Ammonia	165.	168	mg/l	2	20

Project Name:

Project Number:

RITC

BATTERY TUNNEL

Serial_No:06072215:15

Project Name: RITC Lab Number: L2228679 **Project Number:** BATTERY TUNNEL

Report Date: 06/07/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation Initial Final Temp				Frozen				
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2228679-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2228679-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2228679-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2228679-01D	Plastic 250ml NaOH preserved	Α	>12	>12	4.0	Υ	Absent		TCN-9010(14)
L2228679-01E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),TL-TI(180),NI- TI(180),ZN-TI(180),SB-TI(180),PB-TI(180),SE- TI(180),CU-TI(180),V-TI(180),CO-TI(180),FE- TI(180),MG-TI(180),HG-T(28),MN-TI(180),K- TI(180),NA-TI(180),CD-TI(180),CA-TI(180)
L2228679-01F	Plastic 500ml H2SO4 preserved	Α	>12	>12	4.0	Υ	Absent		NH3-350(28)
L2228679-01G	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
L2228679-01H	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
L2228679-01I	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8082-1200ML(365)
L2228679-01J	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8082-1200ML(365)
L2228679-01K	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8082-1200ML(365)
L2228679-01L	Amber 1000ml Na2S2O3	Α	7	7	4.0	Υ	Absent		NYTCL-8082-1200ML(365)
	Container ID L2228679-01A L2228679-01B L2228679-01C L2228679-01D L2228679-01E L2228679-01F L2228679-01G L2228679-01H L2228679-01I L2228679-01J L2228679-01J	L2228679-01A Vial HCl preserved L2228679-01B Vial HCl preserved L2228679-01C Vial HCl preserved L2228679-01D Plastic 250ml NaOH preserved L2228679-01E Plastic 250ml HNO3 preserved L2228679-01F Plastic 500ml H2SO4 preserved L2228679-01G Amber 1000ml Na2S2O3 L2228679-01H Amber 1000ml Na2S2O3 L2228679-01J Amber 1000ml Na2S2O3 L2228679-01J Amber 1000ml Na2S2O3 L2228679-01J Amber 1000ml Na2S2O3 L2228679-01K Amber 1000ml Na2S2O3	Container ID Container Type Cooler L2228679-01A Vial HCl preserved A L2228679-01B Vial HCl preserved A L2228679-01C Vial HCl preserved A L2228679-01D Plastic 250ml NaOH preserved A L2228679-01E Plastic 250ml HNO3 preserved A L2228679-01F Plastic 500ml H2SO4 preserved A L2228679-01G Amber 1000ml Na2S2O3 A L2228679-01H Amber 1000ml Na2S2O3 A L2228679-01J Amber 1000ml Na2S2O3 A L2228679-01J Amber 1000ml Na2S2O3 A L2228679-01K Amber 1000ml Na2S2O3 A	Container ID Container Type Cooler pH L2228679-01A Vial HCl preserved A NA L2228679-01B Vial HCl preserved A NA L2228679-01C Vial HCl preserved A NA L2228679-01D Plastic 250ml NaOH preserved A >12 L2228679-01E Plastic 250ml HNO3 preserved A <2	Container ID Container Type Cooler PH PH L2228679-01A Vial HCl preserved A NA L2228679-01B Vial HCl preserved A NA L2228679-01C Vial HCl preserved A NA L2228679-01D Plastic 250ml NaOH preserved A >12 >12 L2228679-01E Plastic 250ml HNO3 preserved A <2	Container ID Container Type Cooler pH Title PH Temp deg C L2228679-01A Vial HCl preserved A NA 4.0 L2228679-01B Vial HCl preserved A NA 4.0 L2228679-01C Vial HCl preserved A NA 4.0 L2228679-01D Plastic 250ml NaOH preserved A >12 >12 4.0 L2228679-01E Plastic 250ml HNO3 preserved A <2	Container ID Container Type Cooler pH PH Temp deg C Pres L2228679-01A Vial HCl preserved A NA 4.0 Y L2228679-01B Vial HCl preserved A NA 4.0 Y L2228679-01C Vial HCl preserved A NA 4.0 Y L2228679-01D Plastic 250ml NaOH preserved A >12 >12 4.0 Y L2228679-01E Plastic 250ml HNO3 preserved A <2	Container ID Container Type Cooler PH PH PH deg C Pres Seal L2228679-01A Vial HCl preserved A NA 4.0 Y Absent L2228679-01B Vial HCl preserved A NA 4.0 Y Absent L2228679-01C Vial HCl preserved A NA 4.0 Y Absent L2228679-01D Plastic 250ml NaOH preserved A >12 >12 4.0 Y Absent L2228679-01E Plastic 250ml HNO3 preserved A <2	Container ID Container Type Cooler PH PH PH deg C Pres Seal PHOZEIT Date/Time L2228679-01A Vial HCl preserved A NA 4.0 Y Absent L2228679-01B Vial HCl preserved A NA 4.0 Y Absent L2228679-01C Vial HCl preserved A NA 4.0 Y Absent L2228679-01D Plastic 250ml NaOH preserved A >12 >12 4.0 Y Absent L2228679-01E Plastic 250ml HNO3 preserved A <2

Project Name:RITCLab Number:L2228679Project Number:BATTERY TUNNELReport Date:06/07/22

GLOSSARY

Acronyms

LOQ

MS

RL

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL
includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2228679Project Number:BATTERY TUNNELReport Date:06/07/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2228679Project Number:BATTERY TUNNELReport Date:06/07/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:06072215:15

Project Name:RITCLab Number:L2228679Project Number:BATTERY TUNNELReport Date:06/07/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06072215:15

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Albany, NY 12205: 14 Walker v Tonawanda, NY 14150: 275 Co Project Information Project Name: Rife	Anhwah, NJ 07430: 35 Whitney Rd, Suite 5 Ulbany, NY 12205: 14 Walker Way Conawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: RTC Project Location: 3875 LIVER Road			f/	Date Rec'd in Lab Deliverables ASP-A EQuIS (1 File)				ASP-B			ALPHA Job # L223 8679 Billing Information Same as Client Info		
Client Information	STATE OF THE PARTY	Project # BATTERY						Othe								
Client: INVENTUM	ENCHEFONC	(Use Project name as Pr					Regu	1000	Requir	remer	it		all St	Disposal Site Information		
		Project Manager: JoHN		40				NY TO	ogs		×	NY Pa	rt 375	Please identify below location of		
HERNDON, VA	20170	ALPHAQuote #:					AWQ Standards NY CP-51					-51	applicable disposal facilities.			
Phone: 585-734-		Turn-Around Time	urn-Around Time					NY R	estricted	Use		Other		Disposal Facility	;	
Fax: john black	x: john.black@inventumeng.com Standard Due Date:							nrestrict					□ NJ	× NY		
		and the same of th) 🗡	# of Days	s: 4				Sewer D	ischar	ge			Other:		1000
These samples have b							ANA	LYSIS			V			Sample Filtra	tion	1 0
Other project specific		ents:			1		8260	TON 90128	CT	AMMONIA 350.1	ASBESTOS IN WATE			Done Lab to do Preservation Lab to do		t a l B o t
ALPHA Lab ID	Sa	Sample ID Collection Samp			Sample	Sampler's		7.	32	MON	86.5					t
(Lab Use Only)	34	inpie ib	Date	Time	Matrix	Initials	호호	154	Z Z	AM	\$			Sample Specifi	c Comments	е
28679 1	BATTERY-TUNN	EL-06012022	6/1/22	845	WA	AB	×	X	×	×	X					
		Con Verilliano albertario														
December Code:	Cantaines Cada						_		Ш							丄
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification N Mansfield: Certification N Relinquished Formum Flory	By:	111		Preservative	Receiv	_		(A)		Date:	14:5	and complete not be loggeturnaround start until at resolved. B THIS COC, HAS READ TO BE BOUTERMS & C	time clock will ny ambiguities Y EXECUTING THE CLIENT AND AGREE JND BY ALPH CONDITIONS.	not are G
Form No: 01-25 HC (rev. 30	0-Sept-2013)													(See revers	e side.)	

EMSL Analytical, Inc.

490 Rowley Road Depew, NY 14043 Phone/Fax: (716) 651-0030 / (716) 651-0394 http://www.EMSL.com / buffalolab@emsl.com EMSL Order ID: 142202051 Customer ID: ALPH55

Customer PO: Project ID:

Attn: Sub Reports

Alpha Analytical, Inc. 8 Walkup Drive Westborough, MA 01581 Phone:

Fax: (508) 898-9193 Received: 06/01/2022 Analyzed: 06/06/2022

Proj: L2228679

Test Report: Determination of Asbestos Structures ≥ 0.5 μm & > 10μm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

Sample ID Client / EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered	Effective Filter Area	Area Analyzed	i	Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration	Confidence Limits
		(ml)	(mm²)	(mm²)				MFI	(million fibers per	liter)
Battery Tunnel 06012922 142202051-0001	6/2/2022 02:47 PM	1	1288	0.2620	≥ 0.5 µm	None Detected	ND	4.90	<4.90	0.00 - 18.00
					> 10 µm only	None Detected	ND	4.90	<4.90	0.00 - 18.00

Collection Date/Time: 06/01/2022 08:45 AM

Due to the excessive particulate, the analytical sensitivity was not reached.

Analyst(s)
Tom Hanes (1)

honda Mc Lee

Rhonda McGee, Laboratory Manager or Other Approved Signatory

Any questions please contact Rhonda McGee.

Initial report from: 06/07/2022 11:21:52

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection performed by the client. Pre-cleaned sample containers are available for purchase from EMSL. Note if sample containers are provided by the client, acceptable bottle blank level is defined as ≤0.01MFL for >=10um fibers. ND=None Detected. No Fibers Detected: the value will be reported as less than 369% of the concentration equivalent to one fiber. 1 to 4 fibers: The result will be reported as less than the corresponding upper 95% confidence limit (Poisson),5 to 30 fibers: Mean and 95% confidence intervals will be reported on the basis of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting. When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted.

Samples analyzed by EMSL Analytical, Inc. Depew, NY NYS ELAP 11606

Attachment B – Laboratory Report – Battery Brick

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

221212

Referencing

Battery Brick

Prepared

Wednesday, March 30, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyz	<u>æd</u>
1,1-Biphenyl	< 284	ug/Kg	3/25/2022 2	22:57
1,2,4,5-Tetrachlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,2,4-Trichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,2-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,3-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,4-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
2,2-Oxybis (1-chloropropane)	< 284	ug/Kg	3/25/2022 2	22:57
2,3,4,6-Tetrachlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4,5-Trichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4,6-Trichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dimethylphenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dinitrophenol	< 1140	ug/Kg	3/25/2022 2	22:57
2,4-Dinitrotoluene	< 284	ug/Kg	3/25/2022 2	22:57
2,6-Dinitrotoluene	< 284	ug/Kg	3/25/2022 2	22:57
2-Chloronaphthalene	< 284	ug/Kg	3/25/2022 2	22:57
2-Chlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2-Methylnapthalene	< 284	ug/Kg	3/25/2022 2	22:57
2-Methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
2-Nitroaniline	< 284	ug/Kg	3/25/2022 2	22:57
2-Nitrophenol	< 284	ug/Kg	3/25/2022 2	22:57
3&4-Methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
3,3'-Dichlorobenzidine	< 284	ug/Kg	3/25/2022 2	22:57
3-Nitroaniline	< 284	ug/Kg	3/25/2022 2	22:57
4,6-Dinitro-2-methylphenol	< 380	ug/Kg	3/25/2022 2	22:57
4-Bromophenyl phenyl ether	< 284	ug/Kg	3/25/2022 2	22:57
4-Chloro-3-methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
4-Chloroaniline	< 284	ug/Kg	3/25/2022 2	22:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 284	ug/Kg	3/25/2022 22:57
4-Nitroaniline	< 284	ug/Kg	3/25/2022 22:57
4-Nitrophenol	< 284	ug/Kg	3/25/2022 22:57
Acenaphthene	< 284	ug/Kg	3/25/2022 22:57
Acenaphthylene	< 284	ug/Kg	3/25/2022 22:57
Acetophenone	< 284	ug/Kg	3/25/2022 22:57
Anthracene	< 284	ug/Kg	3/25/2022 22:57
Atrazine	< 284	ug/Kg	3/25/2022 22:57
Benzaldehyde	< 284	ug/Kg	3/25/2022 22:57
Benzo (a) anthracene	< 284	ug/Kg	3/25/2022 22:57
Benzo (a) pyrene	< 284	ug/Kg	3/25/2022 22:57
Benzo (b) fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Benzo (g,h,i) perylene	< 284	ug/Kg	3/25/2022 22:57
Benzo (k) fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Bis (2-chloroethoxy) methane	< 284	ug/Kg	3/25/2022 22:57
Bis (2-chloroethyl) ether	< 284	ug/Kg	3/25/2022 22:57
Bis (2-ethylhexyl) phthalate	< 284	ug/Kg	3/25/2022 22:57
Butylbenzylphthalate	< 284	ug/Kg	3/25/2022 22:57
Caprolactam	< 284	ug/Kg	3/25/2022 22:57
Carbazole	< 284	ug/Kg	3/25/2022 22:57
Chrysene	< 284	ug/Kg	3/25/2022 22:57
Dibenz (a,h) anthracene	< 284	ug/Kg	3/25/2022 22:57
Dibenzofuran	< 284	ug/Kg	3/25/2022 22:57
Diethyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Dimethyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Di-n-butyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Di-n-octylphthalate	< 284	ug/Kg	3/25/2022 22:57
Fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Fluorene	< 284	ug/Kg	3/25/2022 22:57
Hexachlorobenzene	< 284	ug/Kg	3/25/2022 22:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 284	ug/Kg	3/25/2022 22:57
Hexachlorocyclopentadiene	< 1140	ug/Kg	3/25/2022 22:57
Hexachloroethane	< 284	ug/Kg	3/25/2022 22:57
Indeno (1,2,3-cd) pyrene	< 284	ug/Kg	3/25/2022 22:57
Isophorone	< 284	ug/Kg	3/25/2022 22:57
Naphthalene	< 284	ug/Kg	3/25/2022 22:57
Nitrobenzene	< 284	ug/Kg	3/25/2022 22:57
N-Nitroso-di-n-propylamine	< 284	ug/Kg	3/25/2022 22:57
N-Nitrosodiphenylamine	< 284	ug/Kg	3/25/2022 22:57
Pentachlorophenol	< 568	ug/Kg	3/25/2022 22:57
Phenanthrene	< 284	ug/Kg	3/25/2022 22:57
Phenol	< 284	ug/Kg	3/25/2022 22:57
Pyrene	< 284	ug/Kg	3/25/2022 22:57

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	62.8	35.4 - 92.4		3/25/2022	22:57
2-Fluorobiphenyl	62.2	39.6 - 84.4		3/25/2022	22:57
2-Fluorophenol	50.3	35.5 - 78.9		3/25/2022	22:57
Nitrobenzene-d5	50.7	36.5 - 78.2		3/25/2022	22:57
Phenol-d5	55.1	37.1 - 78.3		3/25/2022	22:57
Terphenyl-d14	71.0	42.3 - 103		3/25/2022	22:57

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8270D EPA 3546

Preparation Date: 3/24/2022 **Data File:** B60684.D

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1,2,2-Tetrachloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1,2-Trichloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1-Dichloroethane	< 8.33	ug/Kg		3/29/2022 16:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

1,1-Dichloroethene	< 8.33	ug/Kg	3/29/2022 16:57
1,2,3-Trichlorobenzene	< 20.8	ug/Kg	3/29/2022 16:57
1,2,4-Trichlorobenzene	< 20.8	ug/Kg	3/29/2022 16:57
1,2-Dibromo-3-Chloropropane	< 41.7	ug/Kg	3/29/2022 16:57
1,2-Dibromoethane	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichloroethane	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichloropropane	< 8.33	ug/Kg	3/29/2022 16:57
1,3-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,4-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,4-Dioxane	< 41.7	ug/Kg	3/29/2022 16:57
2-Butanone	< 41.7	ug/Kg	3/29/2022 16:57
2-Hexanone	< 20.8	ug/Kg	3/29/2022 16:57
4-Methyl-2-pentanone	< 20.8	ug/Kg	3/29/2022 16:57
Acetone	< 41.7	ug/Kg	3/29/2022 16:57
Benzene	< 8.33	ug/Kg	3/29/2022 16:57
Bromochloromethane	< 20.8	ug/Kg	3/29/2022 16:57
Bromodichloromethane	< 8.33	ug/Kg	3/29/2022 16:57
Bromoform	< 20.8	ug/Kg	3/29/2022 16:57
Bromomethane	< 8.33	ug/Kg	3/29/2022 16:57
Carbon disulfide	< 8.33	ug/Kg	3/29/2022 16:57
Carbon Tetrachloride	< 8.33	ug/Kg	3/29/2022 16:57
Chlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
Chloroethane	< 8.33	ug/Kg	3/29/2022 16:57
Chloroform	< 8.33	ug/Kg	3/29/2022 16:57
Chloromethane	< 8.33	ug/Kg	3/29/2022 16:57
cis-1,2-Dichloroethene	< 8.33	ug/Kg	3/29/2022 16:57
cis-1,3-Dichloropropene	< 8.33	ug/Kg	3/29/2022 16:57
Cyclohexane	< 41.7	ug/Kg	3/29/2022 16:57
Dibromochloromethane	< 8.33	ug/Kg	3/29/2022 16:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Dichlorodifluoromethane	< 8.33	ug/Kg			3/29/20	22 16:57
Ethylbenzene	< 8.33	ug/Kg			3/29/20	22 16:57
Freon 113	< 8.33	ug/Kg			3/29/20	22 16:57
Isopropylbenzene	< 8.33	ug/Kg			3/29/20	22 16:57
m,p-Xylene	< 8.33	ug/Kg			3/29/20	22 16:57
Methyl acetate	< 8.33	ug/Kg			3/29/20	22 16:57
Methyl tert-butyl Ether	< 8.33	ug/Kg			3/29/20	22 16:57
Methylcyclohexane	< 8.33	ug/Kg			3/29/20	22 16:57
Methylene chloride	< 20.8	ug/Kg			3/29/20	22 16:57
o-Xylene	< 8.33	ug/Kg			3/29/20	22 16:57
Styrene	< 20.8	ug/Kg			3/29/20	22 16:57
Tetrachloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
Toluene	< 8.33	ug/Kg			3/29/20	22 16:57
trans-1,2-Dichloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
trans-1,3-Dichloropropene	< 8.33	ug/Kg			3/29/20	22 16:57
Trichloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
Trichlorofluoromethane	< 8.33	ug/Kg			3/29/20	22 16:57
Vinyl chloride	< 8.33	ug/Kg			3/29/20	22 16:57
<u>Surrogate</u>	Perc	ent Recovery	<u>Limits</u>	Outliers	Date An	alyzed
1,2-Dichloroethane-d4		120	74.7 - 140		3/29/2022	16:57
4-Bromofluorobenzene		93.9	68 - 130		3/29/2022	16:57

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08073.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

70.3 - 140

69 - 138

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

115

119

Pentafluorobenzene

Toluene-D8

16:57

16:57

3/29/2022

3/29/2022

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limi	t Qualifier	Date An	<u>alyzed</u>
1,4-Dichlorobenzene	< 40.0	ug/L	7500		3/28/202	22 17:46
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		3/28/202	22 17:46
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		3/28/202	22 17:46
2,4-Dinitrotoluene	< 40.0	ug/L	130		3/28/202	22 17:46
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		3/28/202	22 17:46
Hexachlorobenzene	< 40.0	ug/L	130		3/28/202	22 17:46
Hexachlorobutadiene	< 40.0	ug/L	500		3/28/202	22 17:46
Hexachloroethane	< 40.0	ug/L	3000		3/28/202	22 17:46
Nitrobenzene	< 40.0	ug/L	2000		3/28/202	22 17:46
Pentachlorophenol	< 80.0	ug/L	100000		3/28/202	22 17:46
Pyridine	< 40.0	ug/L	5000		3/28/202	22 17:46
<u>Surrogate</u>	Percei	nt Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
2.4.6-Tribromophenol		90.3	29.6 - 139		3/28/2022	17:46

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	alyzed
2,4,6-Tribromophenol	90.3	29.6 - 139		3/28/2022	17:46
2-Fluorobiphenyl	69.5	5 - 124		3/28/2022	17:46
2-Fluorophenol	71.9	10 - 122		3/28/2022	17:46
Nitrobenzene-d5	65.8	28.7 - 119		3/28/2022	17:46
Phenol-d5	64.5	10 - 115		3/28/2022	17:46
Terphenyl-d14	80.4	32.2 - 142		3/28/2022	17:46

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60704.D

TCLP Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 15:59
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 15:59
2-Butanone	< 100	ug/L	200000	3/29/2022 15:59
Benzene	< 20.0	ug/L	500	3/29/2022 15:59

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 15:59
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 15:59
Chloroform	< 20.0	ug/L	6000		3/29/20	22 15:59
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 15:59
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 15:59
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 15:59
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		<u>Outliers</u>	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		118	81.1 - 136		3/29/2022	15:59
4-Bromofluorobenzene		98.0	75.8 - 132		3/29/2022	15:59
Pentafluorobenzene		114	82 - 132		3/29/2022	15:59
Toluene-D8		116	64.6 - 137		3/29/2022	15:59

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08070.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed	
1,1-Biphenyl	< 278	ug/Kg	3/25/2022 03:4:	3
1,2,4,5-Tetrachlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,2,4-Trichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,2-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,3-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,4-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
2,2-Oxybis (1-chloropropane)	< 278	ug/Kg	3/25/2022 03:4:	3
2,3,4,6-Tetrachlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4,5-Trichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4,6-Trichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dimethylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dinitrophenol	< 1110	ug/Kg	3/25/2022 03:4:	3
2,4-Dinitrotoluene	< 278	ug/Kg	3/25/2022 03:4:	3
2,6-Dinitrotoluene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Chloronaphthalene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Chlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2-Methylnapthalene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
2-Nitroaniline	< 278	ug/Kg	3/25/2022 03:4:	3
2-Nitrophenol	< 278	ug/Kg	3/25/2022 03:4:	3
3&4-Methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
3,3'-Dichlorobenzidine	< 278	ug/Kg	3/25/2022 03:4:	3
3-Nitroaniline	< 278	ug/Kg	3/25/2022 03:4:	3
4,6-Dinitro-2-methylphenol	< 372	ug/Kg	3/25/2022 03:4:	3
4-Bromophenyl phenyl ether	< 278	ug/Kg	3/25/2022 03:4:	3
4-Chloro-3-methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
4-Chloroaniline	< 278	ug/Kg	3/25/2022 03:4:	3

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 278	ug/Kg	3/25/2022 03:43
4-Nitroaniline	< 278	ug/Kg	3/25/2022 03:43
4-Nitrophenol	< 278	ug/Kg	3/25/2022 03:43
Acenaphthene	< 278	ug/Kg	3/25/2022 03:43
Acenaphthylene	< 278	ug/Kg	3/25/2022 03:43
Acetophenone	< 278	ug/Kg	3/25/2022 03:43
Anthracene	< 278	ug/Kg	3/25/2022 03:43
Atrazine	< 278	ug/Kg	3/25/2022 03:43
Benzaldehyde	< 278	ug/Kg	3/25/2022 03:43
Benzo (a) anthracene	< 278	ug/Kg	3/25/2022 03:43
Benzo (a) pyrene	< 278	ug/Kg	3/25/2022 03:43
Benzo (b) fluoranthene	< 278	ug/Kg	3/25/2022 03:43
Benzo (g,h,i) perylene	< 278	ug/Kg	3/25/2022 03:43
Benzo (k) fluoranthene	< 278	ug/Kg	3/25/2022 03:43
Bis (2-chloroethoxy) methane	< 278	ug/Kg	3/25/2022 03:43
Bis (2-chloroethyl) ether	< 278	ug/Kg	3/25/2022 03:43
Bis (2-ethylhexyl) phthalate	< 278	ug/Kg	3/25/2022 03:43
Butylbenzylphthalate	< 278	ug/Kg	3/25/2022 03:43
Caprolactam	< 278	ug/Kg	3/25/2022 03:43
Carbazole	< 278	ug/Kg	3/25/2022 03:43
Chrysene	301	ug/Kg	3/25/2022 03:43
Dibenz (a,h) anthracene	< 278	ug/Kg	3/25/2022 03:43
Dibenzofuran	< 278	ug/Kg	3/25/2022 03:43
Diethyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Dimethyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Di-n-butyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Di-n-octylphthalate	< 278	ug/Kg	3/25/2022 03:43
Fluoranthene	499	ug/Kg	3/25/2022 03:43
Fluorene	< 278	ug/Kg	3/25/2022 03:43
Hexachlorobenzene	< 278	ug/Kg	3/25/2022 03:43

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 278	ug/Kg	3/25/2022 03:43
Hexachlorocyclopentadiene	< 1110	ug/Kg	3/25/2022 03:43
Hexachloroethane	< 278	ug/Kg	3/25/2022 03:43
Indeno (1,2,3-cd) pyrene	< 278	ug/Kg	3/25/2022 03:43
Isophorone	< 278	ug/Kg	3/25/2022 03:43
Naphthalene	< 278	ug/Kg	3/25/2022 03:43
Nitrobenzene	< 278	ug/Kg	3/25/2022 03:43
N-Nitroso-di-n-propylamine	< 278	ug/Kg	3/25/2022 03:43
N-Nitrosodiphenylamine	< 278	ug/Kg	3/25/2022 03:43
Pentachlorophenol	< 556	ug/Kg	3/25/2022 03:43
Phenanthrene	431	ug/Kg	3/25/2022 03:43
Phenol	< 278	ug/Kg	3/25/2022 03:43
Pyrene	< 278	ug/Kg	3/25/2022 03:43

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	62.6	35.4 - 92.4		3/25/2022	03:43
2-Fluorobiphenyl	46.8	39.6 - 84.4		3/25/2022	03:43
2-Fluorophenol	54.9	35.5 - 78.9		3/25/2022	03:43
Nitrobenzene-d5	40.3	36.5 - 78.2		3/25/2022	03:43
Phenol-d5	62.9	37.1 - 78.3		3/25/2022	03:43
Terphenyl-d14	62.8	42.3 - 103		3/25/2022	03:43

Method Reference(s): EPA 8270D
EPA 3546
Preparation Date: 3/24/2022
Data File: B60650.D

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1,2,2-Tetrachloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1,2-Trichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1-Dichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1-Dichloroethene	< 9.62	ug/Kg		3/29/2022 17:16

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

1,2,3-Trichlorobenzene	< 24.0	ug/Kg	3/29/2022 17:16
1,2,4-Trichlorobenzene	< 24.0	ug/Kg	3/29/2022 17:16
1,2-Dibromo-3-Chloropropane	< 48.1	ug/Kg	3/29/2022 17:16
1,2-Dibromoethane	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichloroethane	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichloropropane	< 9.62	ug/Kg	3/29/2022 17:16
1,3-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,4-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,4-Dioxane	< 48.1	ug/Kg	3/29/2022 17:16
2-Butanone	< 48.1	ug/Kg	3/29/2022 17:16
2-Hexanone	< 24.0	ug/Kg	3/29/2022 17:16
4-Methyl-2-pentanone	< 24.0	ug/Kg	3/29/2022 17:16
Acetone	< 48.1	ug/Kg	3/29/2022 17:16
Benzene	< 9.62	ug/Kg	3/29/2022 17:16
Bromochloromethane	< 24.0	ug/Kg	3/29/2022 17:16
Bromodichloromethane	< 9.62	ug/Kg	3/29/2022 17:16
Bromoform	< 24.0	ug/Kg	3/29/2022 17:16
Bromomethane	< 9.62	ug/Kg	3/29/2022 17:16
Carbon disulfide	< 9.62	ug/Kg	3/29/2022 17:16
Carbon Tetrachloride	< 9.62	ug/Kg	3/29/2022 17:16
Chlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
Chloroethane	< 9.62	ug/Kg	3/29/2022 17:16
Chloroform	< 9.62	ug/Kg	3/29/2022 17:16
Chloromethane	< 9.62	ug/Kg	3/29/2022 17:16
cis-1,2-Dichloroethene	< 9.62	ug/Kg	3/29/2022 17:16
cis-1,3-Dichloropropene	< 9.62	ug/Kg	3/29/2022 17:16
Cyclohexane	< 48.1	ug/Kg	3/29/2022 17:16
Dibromochloromethane	< 9.62	ug/Kg	3/29/2022 17:16
Dichlorodifluoromethane	< 9.62	ug/Kg	3/29/2022 17:16

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4.2 D: 11 41 14		101	747 140		2/20/2022 17/16
<u>Surrogate</u>	Perc	ent Recovery	<u>Limits</u>	Outliers	Date Analyzed
Vinyl chloride	< 9.62	ug/Kg			3/29/2022 17:16
Trichlorofluoromethane	< 9.62	ug/Kg			3/29/2022 17:16
Trichloroethene	< 9.62	ug/Kg			3/29/2022 17:16
trans-1,3-Dichloropropene	< 9.62	ug/Kg			3/29/2022 17:16
trans-1,2-Dichloroethene	< 9.62	ug/Kg			3/29/2022 17:16
Toluene	< 9.62	ug/Kg			3/29/2022 17:16
Tetrachloroethene	< 9.62	ug/Kg			3/29/2022 17:16
Styrene	< 24.0	ug/Kg			3/29/2022 17:16
o-Xylene	< 9.62	ug/Kg			3/29/2022 17:16
Methylene chloride	< 24.0	ug/Kg			3/29/2022 17:16
Methylcyclohexane	< 9.62	ug/Kg			3/29/2022 17:16
Methyl tert-butyl Ether	< 9.62	ug/Kg			3/29/2022 17:16
Methyl acetate	< 9.62	ug/Kg			3/29/2022 17:16
m,p-Xylene	< 9.62	ug/Kg			3/29/2022 17:16
Isopropylbenzene	< 9.62	ug/Kg			3/29/2022 17:16
Freon 113	< 9.62	ug/Kg			3/29/2022 17:16
Ethylbenzene	< 9.62	ug/Kg			3/29/2022 17:16

<u>Surrogate</u>	Percent Recovery	Limits	<u>Outners</u>	<u>Date An</u>	aiyzea
1,2-Dichloroethane-d4	121	74.7 - 140		3/29/2022	17:16
4-Bromofluorobenzene	94.1	68 - 130		3/29/2022	17:16
Pentafluorobenzene	115	70.3 - 140		3/29/2022	17:16
Toluene-D8	121	69 - 138		3/29/2022	17:16

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08074.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	3/28/2022 18:15
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	3/28/2022 18:15
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	3/28/2022 18:15
2,4-Dinitrotoluene	< 40.0	ug/L	130	3/28/2022 18:15
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	3/28/2022 18:15
Hexachlorobenzene	< 40.0	ug/L	130	3/28/2022 18:15
Hexachlorobutadiene	< 40.0	ug/L	500	3/28/2022 18:15
Hexachloroethane	< 40.0	ug/L	3000	3/28/2022 18:15
Nitrobenzene	< 40.0	ug/L	2000	3/28/2022 18:15
Pentachlorophenol	< 80.0	ug/L	100000	3/28/2022 18:15
Pyridine	< 40.0	ug/L	5000	3/28/2022 18:15

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	92.9	29.6 - 139		3/28/2022	18:15
2-Fluorobiphenyl	72.6	5 - 124		3/28/2022	18:15
2-Fluorophenol	72.6	10 - 122		3/28/2022	18:15
Nitrobenzene-d5	65.2	28.7 - 119		3/28/2022	18:15
Phenol-d5	65.5	10 - 115		3/28/2022	18:15
Terphenyl-d14	80.3	32.2 - 142		3/28/2022	18:15

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60705.D

TCLP Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 16:18
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 16:18
2-Butanone	< 100	ug/L	200000	3/29/2022 16:18
Benzene	< 20.0	ug/L	500	3/29/2022 16:18

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 16:18
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 16:18
Chloroform	< 20.0	ug/L	6000		3/29/20	22 16:18
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 16:18
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 16:18
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 16:18
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		126	81.1 - 136		3/29/2022	16:18
4-Bromofluorobenzene		98.9	75.8 - 132		3/29/2022	16:18
Pentafluorobenzene		115	82 - 132		3/29/2022	16:18
Toluene-D8		122	64.6 - 137		3/29/2022	16:18

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08071.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 269	ug/Kg		3/25/2022 04:12
1,2,4,5-Tetrachlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,2,4-Trichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,2-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,3-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,4-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
2,2-Oxybis (1-chloropropane)	< 269	ug/Kg		3/25/2022 04:12
2,3,4,6-Tetrachlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4,5-Trichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4,6-Trichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dimethylphenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dinitrophenol	< 1080	ug/Kg		3/25/2022 04:12
2,4-Dinitrotoluene	< 269	ug/Kg		3/25/2022 04:12
2,6-Dinitrotoluene	< 269	ug/Kg		3/25/2022 04:12
2-Chloronaphthalene	< 269	ug/Kg		3/25/2022 04:12
2-Chlorophenol	< 269	ug/Kg		3/25/2022 04:12
2-Methylnapthalene	< 269	ug/Kg		3/25/2022 04:12
2-Methylphenol	< 269	ug/Kg		3/25/2022 04:12
2-Nitroaniline	< 269	ug/Kg		3/25/2022 04:12
2-Nitrophenol	< 269	ug/Kg		3/25/2022 04:12
3&4-Methylphenol	< 269	ug/Kg		3/25/2022 04:12
3,3'-Dichlorobenzidine	< 269	ug/Kg		3/25/2022 04:12
3-Nitroaniline	< 269	ug/Kg		3/25/2022 04:12
4,6-Dinitro-2-methylphenol	< 360	ug/Kg		3/25/2022 04:12
4-Bromophenyl phenyl ether	< 269	ug/Kg		3/25/2022 04:12
4-Chloro-3-methylphenol	< 269	ug/Kg		3/25/2022 04:12
4-Chloroaniline	< 269	ug/Kg		3/25/2022 04:12

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 269	ug/Kg	3/25/2022 04:12
4-Nitroaniline	< 269	ug/Kg	3/25/2022 04:12
4-Nitrophenol	< 269	ug/Kg	3/25/2022 04:12
Acenaphthene	< 269	ug/Kg	3/25/2022 04:12
Acenaphthylene	< 269	ug/Kg	3/25/2022 04:12
Acetophenone	< 269	ug/Kg	3/25/2022 04:12
Anthracene	< 269	ug/Kg	3/25/2022 04:12
Atrazine	< 269	ug/Kg	3/25/2022 04:12
Benzaldehyde	< 269	ug/Kg	3/25/2022 04:12
Benzo (a) anthracene	< 269	ug/Kg	3/25/2022 04:12
Benzo (a) pyrene	< 269	ug/Kg	3/25/2022 04:12
Benzo (b) fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Benzo (g,h,i) perylene	< 269	ug/Kg	3/25/2022 04:12
Benzo (k) fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Bis (2-chloroethoxy) methane	< 269	ug/Kg	3/25/2022 04:12
Bis (2-chloroethyl) ether	< 269	ug/Kg	3/25/2022 04:12
Bis (2-ethylhexyl) phthalate	< 269	ug/Kg	3/25/2022 04:12
Butylbenzylphthalate	< 269	ug/Kg	3/25/2022 04:12
Caprolactam	< 269	ug/Kg	3/25/2022 04:12
Carbazole	< 269	ug/Kg	3/25/2022 04:12
Chrysene	< 269	ug/Kg	3/25/2022 04:12
Dibenz (a,h) anthracene	< 269	ug/Kg	3/25/2022 04:12
Dibenzofuran	< 269	ug/Kg	3/25/2022 04:12
Diethyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Dimethyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Di-n-butyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Di-n-octylphthalate	< 269	ug/Kg	3/25/2022 04:12
Fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Fluorene	< 269	ug/Kg	3/25/2022 04:12
Hexachlorobenzene	< 269	ug/Kg	3/25/2022 04:12

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 269	ug/Kg	3/25/2022 04:12
Hexachlorocyclopentadiene	< 1080	ug/Kg	3/25/2022 04:12
Hexachloroethane	< 269	ug/Kg	3/25/2022 04:12
Indeno (1,2,3-cd) pyrene	< 269	ug/Kg	3/25/2022 04:12
Isophorone	< 269	ug/Kg	3/25/2022 04:12
Naphthalene	< 269	ug/Kg	3/25/2022 04:12
Nitrobenzene	< 269	ug/Kg	3/25/2022 04:12
N-Nitroso-di-n-propylamine	< 269	ug/Kg	3/25/2022 04:12
N-Nitrosodiphenylamine	< 269	ug/Kg	3/25/2022 04:12
Pentachlorophenol	< 538	ug/Kg	3/25/2022 04:12
Phenanthrene	< 269	ug/Kg	3/25/2022 04:12
Phenol	< 269	ug/Kg	3/25/2022 04:12
Pyrene	< 269	ug/Kg	3/25/2022 04:12

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	56.8	35.4 - 92.4		3/25/2022	04:12
2-Fluorobiphenyl	40.5	39.6 - 84.4		3/25/2022	04:12
2-Fluorophenol	45.1	35.5 - 78.9		3/25/2022	04:12
Nitrobenzene-d5	35.1	36.5 - 78.2	*	3/25/2022	04:12
Phenol-d5	47.7	37.1 - 78.3		3/25/2022	04:12
Terphenyl-d14	59.9	42.3 - 103		3/25/2022	04:12

Method Reference(s):EPA 8270DEPA 3546Preparation Date:3/24/2022Data File:B60651.D

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1,2,2-Tetrachloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1,2-Trichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1-Dichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1-Dichloroethene	< 5.71	ug/Kg		3/29/2022 17:35

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

			-1 -1 -
1,2,3-Trichlorobenzene	< 14.3	ug/Kg	3/29/2022 17:35
1,2,4-Trichlorobenzene	< 14.3	ug/Kg	3/29/2022 17:35
1,2-Dibromo-3-Chloropropane	< 28.6	ug/Kg	3/29/2022 17:35
1,2-Dibromoethane	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichloroethane	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichloropropane	< 5.71	ug/Kg	3/29/2022 17:35
1,3-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,4-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,4-Dioxane	< 28.6	ug/Kg	3/29/2022 17:35
2-Butanone	< 28.6	ug/Kg	3/29/2022 17:35
2-Hexanone	< 14.3	ug/Kg	3/29/2022 17:35
4-Methyl-2-pentanone	< 14.3	ug/Kg	3/29/2022 17:35
Acetone	< 28.6	ug/Kg	3/29/2022 17:35
Benzene	< 5.71	ug/Kg	3/29/2022 17:35
Bromochloromethane	< 14.3	ug/Kg	3/29/2022 17:35
Bromodichloromethane	< 5.71	ug/Kg	3/29/2022 17:35
Bromoform	< 14.3	ug/Kg	3/29/2022 17:35
Bromomethane	< 5.71	ug/Kg	3/29/2022 17:35
Carbon disulfide	< 5.71	ug/Kg	3/29/2022 17:35
Carbon Tetrachloride	< 5.71	ug/Kg	3/29/2022 17:35
Chlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
Chloroethane	< 5.71	ug/Kg	3/29/2022 17:35
Chloroform	< 5.71	ug/Kg	3/29/2022 17:35
Chloromethane	< 5.71	ug/Kg	3/29/2022 17:35
cis-1,2-Dichloroethene	< 5.71	ug/Kg	3/29/2022 17:35
cis-1,3-Dichloropropene	< 5.71	ug/Kg	3/29/2022 17:35
Cyclohexane	< 28.6	ug/Kg	3/29/2022 17:35
Dibromochloromethane	< 5.71	ug/Kg	3/29/2022 17:35
Dichlorodifluoromethane	< 5.71	ug/Kg	3/29/2022 17:35

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Trichloroethene Trichlorofluoromethane	< 5.71 < 5.71	ug/Kg ug/Kg		3/29/2022 3/29/2022	
trans-1,3-Dichloropropene	< 5.71	ug/Kg		3/29/2022	
trans-1,2-Dichloroethene	< 5.71	ug/Kg		3/29/2022	17:35
Toluene	< 5.71	ug/Kg		3/29/2022	17:35
Tetrachloroethene	< 5.71	ug/Kg		3/29/2022	17:35
Styrene	< 14.3	ug/Kg		3/29/2022	17:35
o-Xylene	< 5.71	ug/Kg		3/29/2022	17:35
Methylene chloride	< 14.3	ug/Kg		3/29/2022	17:35
Methylcyclohexane	< 5.71	ug/Kg		3/29/2022	17:35
Methyl tert-butyl Ether	< 5.71	ug/Kg		3/29/2022	17:35
Methyl acetate	< 5.71	ug/Kg		3/29/2022	17:35
m,p-Xylene	< 5.71	ug/Kg		3/29/2022	17:35
Isopropylbenzene	< 5.71	ug/Kg		3/29/2022	17:35
Freon 113	< 5.71	ug/Kg		3/29/2022	17:35
Ethylbenzene	< 5.71	ug/Kg		3/29/2022	17:35

120	74.7 - 140	3/29/2022	17:35
91.7	68 - 130	3/29/2022	17:35
116	70.3 - 140	3/29/2022	17:35
121	69 - 138	3/29/2022	17:35
	91.7 116	91.7 68 - 130 116 70.3 - 140	91.7 68 - 130 3/29/2022 116 70.3 - 140 3/29/2022

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08075.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit	Qualifier	Date Ana	alyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500		3/28/202	2 18:44
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		3/28/202	2 18:44
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		3/28/202	2 18:44
2,4-Dinitrotoluene	< 40.0	ug/L	130		3/28/202	2 18:44
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		3/28/202	2 18:44
Hexachlorobenzene	< 40.0	ug/L	130		3/28/202	2 18:44
Hexachlorobutadiene	< 40.0	ug/L	500		3/28/202	2 18:44
Hexachloroethane	< 40.0	ug/L	3000		3/28/202	2 18:44
Nitrobenzene	< 40.0	ug/L	2000		3/28/202	2 18:44
Pentachlorophenol	< 80.0	ug/L	100000		3/28/202	2 18:44
Pyridine	< 40.0	ug/L	5000		3/28/202	2 18:44
Surrogate	Percei	nt Recovery	<u>Limits</u>	Outliers	Date Ana	lyzed
2.4.6-Tribromophenol		92.0	29.6 - 139		3/28/2022	18:44

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	92.0	29.6 - 139		3/28/2022	18:44
2-Fluorobiphenyl	70.0	5 - 124		3/28/2022	18:44
2-Fluorophenol	72.8	10 - 122		3/28/2022	18:44
Nitrobenzene-d5	67.4	28.7 - 119		3/28/2022	18:44
Phenol-d5	67.1	10 - 115		3/28/2022	18:44
Terphenyl-d14	81.1	32.2 - 142		3/28/2022	18:44

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60706.D

TCLP Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 16:37
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 16:37
2-Butanone	< 100	ug/L	200000	3/29/2022 16:37
Benzene	< 20.0	ug/L	500	3/29/2022 16:37

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 16:37
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 16:37
Chloroform	< 20.0	ug/L	6000		3/29/20	22 16:37
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 16:37
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 16:37
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 16:37
<u>Surrogate</u>	<u>Perc</u>	ent Recovery	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		122	81.1 - 136		3/29/2022	16:37
4-Bromofluorobenzene		93.9	75.8 - 132		3/29/2022	16:37
Pentafluorobenzene		116	82 - 132		3/29/2022	16:37
Toluene-D8		122	64.6 - 137		3/29/2022	16:37

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08072.D

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
1,1-Biphenyl	<278	ug/Kg		3/24/2022	22:55
1,2,4,5-Tetrachlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,2,4-Trichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,2-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,3-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,4-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
2,2-0xybis (1-chloropropane)	<278	ug/Kg		3/24/2022	22:55
2,3,4,6-Tetrachlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4,5-Trichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4,6-Trichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dimethylphenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dinitrophenol	<1110	ug/Kg		3/24/2022	22:55
2,4-Dinitrotoluene	<278	ug/Kg		3/24/2022	22:55
2,6-Dinitrotoluene	<278	ug/Kg		3/24/2022	22:55
2-Chloronaphthalene	<278	ug/Kg		3/24/2022	22:55
2-Chlorophenol	<278	ug/Kg		3/24/2022	22:55
2-Methylnapthalene	<278	ug/Kg		3/24/2022	22:55
2-Methylphenol	<278	ug/Kg		3/24/2022	22:55
2-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
2-Nitrophenol	<278	ug/Kg		3/24/2022	22:55
3&4-Methylphenol	<278	ug/Kg		3/24/2022	22:55
3,3'-Dichlorobenzidine	<278	ug/Kg		3/24/2022	22:55
3-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
4,6-Dinitro-2-methylphenol	<556	ug/Kg		3/24/2022	22:55
4-Bromophenyl phenyl ether	<278	ug/Kg		3/24/2022	22:55
4-Chloro-3-methylphenol	<278	ug/Kg		3/24/2022	22:55

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
4-Chloroaniline	<278	ug/Kg		3/24/2022	22:55
4-Chlorophenyl phenyl ether	<278	ug/Kg		3/24/2022	22:55
4-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
4-Nitrophenol	<278	ug/Kg		3/24/2022	22:55
Acenaphthene	<278	ug/Kg		3/24/2022	22:55
Acenaphthylene	<278	ug/Kg		3/24/2022	22:55
Acetophenone	<278	ug/Kg		3/24/2022	22:55
Anthracene	<278	ug/Kg		3/24/2022	22:55
Atrazine	<278	ug/Kg		3/24/2022	22:55
Benzaldehyde	<278	ug/Kg		3/24/2022	22:55
Benzo (a) anthracene	<278	ug/Kg		3/24/2022	22:55
Benzo (a) pyrene	<278	ug/Kg		3/24/2022	22:55
Benzo (b) fluoranthene	<278	ug/Kg		3/24/2022	22:55
Benzo (g,h,i) perylene	<278	ug/Kg		3/24/2022	22:55
Benzo (k) fluoranthene	<278	ug/Kg		3/24/2022	22:55
Bis (2-chloroethoxy) methane	<278	ug/Kg		3/24/2022	22:55
Bis (2-chloroethyl) ether	<278	ug/Kg		3/24/2022	22:55
Bis (2-ethylhexyl) phthalate	<278	ug/Kg		3/24/2022	22:55
Butylbenzylphthalate	<278	ug/Kg		3/24/2022	22:55
Caprolactam	<278	ug/Kg		3/24/2022	22:55
Carbazole	<278	ug/Kg		3/24/2022	22:55
Chrysene	<278	ug/Kg		3/24/2022	22:55
Dibenz (a,h) anthracene	<278	ug/Kg		3/24/2022	22:55
Dibenzofuran	<278	ug/Kg		3/24/2022	22:55
Diethyl phthalate	<278	ug/Kg		3/24/2022	22:55
Dimethyl phthalate	<278	ug/Kg		3/24/2022	22:55
Di-n-butyl phthalate	<278	ug/Kg		3/24/2022	22:55
Di-n-octylphthalate	<278	ug/Kg		3/24/2022	22:55

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed	
Fluoranthene	<278	ug/Kg		3/24/2022	22:55
Fluorene	<278	ug/Kg		3/24/2022	22:55
Hexachlorobenzene	<278	ug/Kg		3/24/2022	22:55
Hexachlorobutadiene	<278	ug/Kg		3/24/2022	22:55
Hexachlorocyclopentadiene	<1110	ug/Kg		3/24/2022	22:55
Hexachloroethane	<278	ug/Kg		3/24/2022	22:55
Indeno (1,2,3-cd) pyrene	<278	ug/Kg		3/24/2022	22:55
Isophorone	<278	ug/Kg		3/24/2022	22:55
Naphthalene	<278	ug/Kg		3/24/2022	22:55
Nitrobenzene	<278	ug/Kg		3/24/2022	22:55
N-Nitroso-di-n-propylamine	<278	ug/Kg		3/24/2022	22:55
N-Nitrosodiphenylamine	<278	ug/Kg		3/24/2022	22:55
Pentachlorophenol	<556	ug/Kg		3/24/2022	22:55
Phenanthrene	<278	ug/Kg		3/24/2022	22:55
Phenol	<278	ug/Kg		3/24/2022	22:55
Pyrene	<278	ug/Kg		3/24/2022	22:55

Method Reference(s):

EPA 8270D

EPA 3546

Preparation Date:

3/24/2022

Data File: QC Batch ID: B60640.D

QC Datth ID.

QC220324ABNS

QC Number:

Blk 1

Inventum Engineering, P.C.

Client:

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Semi-Volatile Organics (Acid/Base Neutrals)

Method R Preparati Data File: QC Numbe	Pyrene	Phenol	Pentachlorophenol	N-Nitroso-di-n-propylamine	Acenaphthene	4-Nitrophenol	4-Chloro-3-methylphenol	2-Chlorophenol	2,4-Dinitrotoluene	1,4-Dichlorobenzene	1,2,4-Trichlorobenzene	Analyte	
Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:				pylamine			henol			1e	zene		
EPA 8270D EPA 3546 3/24/2022 B60641.D LCS 1 QC220324ABNS													
	2650	3970	3970	2650	2650	3970	3970	3970	2650	2650	2650	Added	Snike
	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Units	Snike
	1790	2470	2280	1470	1640	1780	2630	2480	1560	1420	1480	Result	100
	67.5	62.3	57.3	55.5	62.0	44.9	66.4	62.6	59.0	53.6	55.8	Recovery	1080%
	47.1 = 104	48.8 - 79.3	41.8 - 107	32.6 - 89.2	43.5 - 87.2	23.3 - 102	52.2 • 87.8	49.5 = 80.8	40.2 - 99.7	34.3 - 78.9	36.4 ₹ 88	Limits	0% Dac
												Outliers	100
	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	<u>Analyzed</u>	Data

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: TCLP Fluid

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,4-Dichlorobenzene	<40.0	ug/L		3/28/2022	16:19
2,4,5-Trichlorophenol	<40.0	ug/L		3/28/2022	16:19
2,4,6-Trichlorophenol	<40.0	ug/L		3/28/2022	16:19
2,4-Dinitrotoluene	<40.0	ug/L		3/28/2022	16:19
Cresols (as m,p,o-Cresol)	<80.0	ug/L		3/28/2022	16:19
Hexachlorobenzene	<40.0	ug/L		3/28/2022	16:19
Hexachlorobutadiene	<40.0	ug/L		3/28/2022	16:19
Hexachloroethane	<40.0	ug/L		3/28/2022	16:19
Nitrobenzene	<40.0	ug/L		3/28/2022	16:19
Pentachlorophenol	<80.0	ug/L		3/28/2022	16:19
Pyridine	<40.0	ug/L		3/28/2022	16:19
Surrogate	Percent Recovery	<u>Limits</u>	Outliers	Date Anal	yzed
2,4,6-Tribromophenol	88.1	29.6 - 139		3/28/2022	16:19
2-Fluorobiphenyl	62.6	5 - 124		3/28/2022	16:19
2-Fluorophenol	71.5	10 - 122		3/28/2022	16:19
Nitrobenzene-d5	64.9	28.7 - 119		3/28/2022	16:19
Phenol-d5	65.5	10 - 115		3/28/2022	16:19
Terphenyl-d14	78.7	32.2 - 142		3/28/2022	16:19

Method Reference(s):

EPA 8270D

EPA 3510C

Preparation Date: Data File: 3/28/2022 B60701.D

QC Batch ID: QC220328ABNT

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Page 28 of 40

Client: Inventum Engineering, P.C.

Project Reference: **Battery Brick**

Lab Project ID: 221212

TCLP Fluid

Matrix:

TCLP Semi-Volatile Organics

QC Number: QC Batch ID:	Preparation Date: Data File:	Method Reference(s):	Pentachlorophenol	2,4-Dinitrotoluene	2,4,6-Trichlorophenol	1,4-Dichlorobenzene	<u>Analyte</u>
	te:	ıce(s):	300	200	300	200	LCS Added
1 QC2203	3/28/2022 B60702.D B60703.D	EPA 8270D EPA 3510C	300	200	300	200	LCSD Added
1 QC220328ABNT)22 .D .D	70D	ug/L	ug/L	ug/L	ug/L	<u>Spike</u> Units
			299	188	285	156	<u>LCS</u> <u>Result</u>
			298	183	276	156	LCSD Result
			99.6	93.9	95.0	78.2	LCS % LCSD % Recovery Recovery
			99.2	91.3	92.1	77.8	LCSD % Recovery
			26.5 - 160	55.2 - 112	50.5 🕒 126	27.5 - 93.4	% Rec
							<u>LCS</u> <u>Outliers</u>
							LCSD Outliers
			0.427	2.79	3.17	0.568	LCS LCSD Relative % Outliers Outliers Difference
			120	40.9	61.9	71.3	<u>RPD</u> <u>Limit</u>
							RPD Outliers
			3/28/2022	3/28/2022	3/28/2022	3/28/2022	<u>Date</u> <u>Analyzed</u>

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: Solid

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1,2,2-Tetrachloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1,2-Trichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1-Dichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
1,2,3-Trichlorobenzene	<5.00	ug/Kg		3/29/2022	14:07
1,2,4-Trichlorobenzene	<5.00	ug/Kg		3/29/2022	14:07
1,2-Dibromo-3-Chloropropane	<10.0	ug/Kg		3/29/2022	14:07
1,2-Dibromoethane	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichloropropane	<2.00	ug/Kg		3/29/2022	14:07
1,3-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,4-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,4-Dioxane	<10.0	ug/Kg		3/29/2022	14:07
2-Butanone	<10.0	ug/Kg		3/29/2022	14:07
2-Hexanone	<5.00	ug/Kg		3/29/2022	14:07
4-Methyl-2-pentanone	<5.00	ug/Kg		3/29/2022	14:07
Acetone	<10.0	ug/Kg		3/29/2022	14:07
Benzene	<2.00	ug/Kg		3/29/2022	14:07
Bromochloromethane	<5.00	ug/Kg		3/29/2022	14:07
Bromodichloromethane	<2.00	ug/Kg		3/29/2022	14:07
Bromoform	<5.00	ug/Kg		3/29/2022	14:07
Bromomethane	<2.00	ug/Kg		3/29/2022	14:07
Carbon disulfide	<2.00	ug/Kg		3/29/2022	14:07
Carbon Tetrachloride	<2.00	ug/Kg		3/29/2022	14:07
Chlorobenzene	<2.00	ug/Kg		3/29/2022	14:07

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: Solid

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/Kg		3/29/2022	14:07
Chloroform	<2.00	ug/Kg		3/29/2022	14:07
Chloromethane	<2.00	ug/Kg		3/29/2022	14:07
cis-1,2-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
cis-1,3-Dichloropropene	<2.00	ug/Kg		3/29/2022	14:07
Cyclohexane	<10.0	ug/Kg		3/29/2022	14:07
Dibromochloromethane	<2.00	ug/Kg		3/29/2022	14:07
Dichlorodifluoromethane	<2.00	ug/Kg		3/29/2022	14:07
Ethylbenzene	<2.00	ug/Kg		3/29/2022	14:07
Freon 113	<2.00	ug/Kg		3/29/2022	14:07
Isopropylbenzene	<2.00	ug/Kg		3/29/2022	14:07
m,p-Xylene	<2.00	ug/Kg		3/29/2022	14:07
Methyl acetate	<2.00	ug/Kg		3/29/2022	14:07
Methyl tert-butyl Ether	<2.00	ug/Kg		3/29/2022	14:07
Methylcyclohexane	<2.00	ug/Kg		3/29/2022	14:07
Methylene chloride	<5.00	ug/Kg		3/29/2022	14:07
o-Xylene	<2.00	ug/Kg		3/29/2022	14:07
Styrene	< 5.00	ug/Kg		3/29/2022	14:07
Tetrachloroethene	<2.00	ug/Kg		3/29/2022	14:07
Toluene	<2.00	ug/Kg		3/29/2022	14:07
trans-1,2-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
trans-1,3-Dichloropropene	<2.00	ug/Kg		3/29/2022	14:07
Trichloroethene	<2.00	ug/Kg		3/29/2022	14:07
Trichlorofluoromethane	<2.00	ug/Kg		3/29/2022	14:07
Vinyl chloride	<2.00	ug/Kg		3/29/2022	14:07

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Blk 1

Lab Project ID:

221212

Matrix:

Solid

Volatile Organics

QC Number:

<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analy	zed
Surrogate		Percent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		124	74.7 - 140		3/29/2022	14:07
4-Bromofluorobenzene		94.2	68 - 130		3/29/2022	14:07
Pentafluorobenzene		116	70.3 - 140		3/29/2022	14:07
Toluene-D8		122	69 - 138		3/29/2022	14:07
Method Reference(s):	EPA 8260C					
	EPA 5035A - L					
Data File:	z08065.D					
QC Batch ID:	voas220329					

Client: Inventum Engineering, P.C.

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	<u>Date</u>
Analyte	Added	Units	Result	Recovery	Limits	<u>Outliers</u>	<u>Analyzed</u>
1,1,1-Trichloroethane	20.0	ug/Kg	21.4	107	70.9 - 135		3/29/2022
1,1,2,2-Tetrachloroethane	20.0	ug/Kg	19.5	97.3	31.6 - 154		3/29/2022
1,1,2-Trichloroethane	20.0	ug/Kg	21.3	107	62 - 132		3/29/2022
1,1-Dichloroethane	20.0	ug/Kg	21.0	105	73 - 128		3/29/2022
1,1-Dichloroethene	20.0	ug/Kg	19.9	99.6	61.7 - 119		3/29/2022
1,2-Dichlorobenzene	20.0	ug/Kg	18.8	94.1	61 - 118		3/29/2022
1,2-Dichloroethane	20.0	ug/Kg	22.0	110	73.4 - 123		3/29/2022
1,2-Dichloropropane	20.0	ug/Kg	21.3	107	71.3 - 123		3/29/2022
1,3-Dichlorobenzene	20.0	ug/Kg	18.2	91.2	68.7 - 112		3/29/2022
1,4-Dichlorobenzene	20.0	ug/Kg	18.3	91.6	66.9 - 113		3/29/2022
Benzene	20.0	ug/Kg	22.2	111	77.8 - 119		3/29/2022
Bromodichloromethane	20.0	ug/Kg	21.5	108	65.7 - 125		3/29/2022
Bromoform	20.0	ug/Kg	18.5	92.5	54.7 - 130		3/29/2022
Bromomethane	20.0	ug/Kg	16.5	82.7	44.6 - 167		3/29/2022
Carbon Tetrachloride	20.0	ug/Kg	21.2	106	61.8 - 138		3/29/2022
Chlorobenzene	20.0	ug/Kg	19.9	99.7	77.2 - 108		3/29/2022
This report is part of a multipage document and should only be explicated in its entirety. The Obeic of Occidents	ralisated in ite	ntinoto The Ch	aim of Custodu	;		-	

Inventum Engineering, P.C.

Client:

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Volatile Organics

Analyte	<u>Spike</u> Added	<u>Spike</u> <u>Units</u>	LCS Result	LCS % Recovery	% Rec	LCS Outliers	<u>Date</u> <u>Analyzed</u>
Chloroethane	20.0	ug/Kg	18.9	94.4	55.5 - 151		3/29/2022
Chloroform	20.0	ug/Kg	21.5	108	70.1 - 134		3/29/2022
Chloromethane	20.0	ug/Kg	15.3	76.6	42.4 - 168		3/29/2022
cis-1,3-Dichloropropene	20.0	ug/Kg	21.3	107	66.7 - 122		3/29/2022
Dibromochloromethane	20.0	ug/Kg	21.0	105	61.2 - 130		3/29/2022
Ethylbenzene	20.0	ug/Kg	19.4	97.0	71.6 112		3/29/2022
Methylene chloride	20.0	ug/Kg	20.2	101	38.2 - 155		3/29/2022
Tetrachloroethene	20.0	ug/Kg	21.7	109	61.4 - 137		3/29/2022
Toluene	20.0	ug/Kg	22.0	110	71.1 = 124		3/29/2022
trans-1,2-Dichloroethene	20.0	ug/Kg	20.8	104	67.3 - 127		3/29/2022
trans-1,3-Dichloropropene	20.0	ug/Kg	21.6	108	55 - 126		3/29/2022
Trichloroethene	20.0	ug/Kg	22.3	111	69.3 - 128		3/29/2022
Trichlorofluoromethane	20.0	ug/Kg	19.1	95.5	64 - 140		3/29/2022
Vinyl chloride	20.0	ug/Kg	16.3	81.4	51.2 - 160		3/29/2022

Client: Inventum Engineering, P.C.

Project Reference: Lab Project ID: 221212 **Battery Brick**

Solid

Matrix:

Volatile Organics

Analyte

Spike <u>Spike</u> Units Result LCS Recovery LCS % Limits % Rec **Outliers** LCS

Analyzed Date

Added

z08064.D EPA 5035A - L

Data File:

Method Reference(s):

EPA 8260C

QC Batch ID: QC Number: voas220329

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

TCLP Fluid

TCLP Volatile Organics

<u>Analyte</u>	<u> </u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	zed
1,1-Dichloroethene		<20.0	ug/L		3/29/2022	13:29
1,2-Dichloroethane		<20.0	ug/L		3/29/2022	13:29
2-Butanone		<100	ug/L		3/29/2022	13:29
Benzene		<20.0	ug/L		3/29/2022	13:29
Carbon Tetrachloride		<20.0	ug/L		3/29/2022	13:29
Chlorobenzene		<20.0	ug/L		3/29/2022	13:29
Chloroform		<20.0	ug/L		3/29/2022	13:29
Tetrachloroethene		<20.0	ug/L		3/29/2022	13:29
Trichloroethene		<20.0	ug/L		3/29/2022	13:29
Vinyl chloride		<20.0	ug/L		3/29/2022	13:29
Surrogate	Percent R	ecovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	12:	5	81.1 - 136		3/29/2022	13:29
4-Bromofluorobenzene	10:	3	75.8 - 132		3/29/2022	13:29
Pentafluorobenzene	112	2	82 - 132		3/29/2022	13:29
Toluene-D8	12:	1	64.6 - 137		3/29/2022	13:29
	EPA 8260C					
Data File: QC Batch ID:	EPA 5030 z08063.D voax220329 Blk 1					

Inventum Engineering, P.C.

Client:

Project Reference: Battery Brick

Lab Project ID: 221212

TCLP Fluid

Matrix:

TCLP Volatile Organics

(2) :))			
		<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	Date
Analyte		Added	Units	Result	Recovery	Limits	Outliers	<u>Analyzed</u>
1,1-Dichloroethene		20.0	ug/L	20.1	100	65.5 = 116		3/29/2022
1,2-Dichloroethane		20.0	ug/L	21.7	109	78.3 📱 122		3/29/2022
Benzene		20.0	ug/L	22.1	111	81.6 - 114		3/29/2022
Carbon Tetrachloride		20.0	ug/L	21.7	109	76.4 - 129		3/29/2022
Chlorobenzene		20.0	ug/L	19.7	98.7	77.2 - 106		3/29/2022
Chloroform		20.0	ug/L	21.2	106	84.5 - 122		3/29/2022
Tetrachloroethene		20.0	ug/L	21.4	107	64.4 - 130		3/29/2022
Trichloroethene		20.0	ug/L	22.4	112	73.4 - 122		3/29/2022
Vinyl chloride		20.0	ug/L	17.0	85.1	50.9 • 164		3/29/2022
Method Reference(s):	EPA 8260C							
	EPA 5030							

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Data File: QC Number: QC Batch ID:

LCS 1 voax220329

z08062.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

	3/22/12/1500	m w o z s c c c	PARADIGM PROJECT REFERENCE PROJECT REFERENCE
	* BEICK-MUTT-03222022 SD * BEYK-PEN-03222022 SD * BEYK-YELW-03222022 SD	G R SAMPLE IDENTIFIER B	ATTIC Codes: AQ - Aqueous Liquid CCLENT: CARRES AND AND STATE: PHOSE STATE: ATTIC CODES: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid MQ - Non-Aqueous Liquid MG - Groundwater
	4 C C C C C C C C C C C C C C C C C C C	TO TIMBECZ WIMZ->-ZOO TOLVOCS TOLSVOCS TOLSVOCS TOLSVOCS TOLSVOCS	CHENSTANT: ZIP: ADDRESS! CITY: STATE: ZIP: PHONE: ATTN: ATTN: ATTN: DW - Drinking Water SO - Soil ndwater NW - Wastewater SL - Sludge
		PAREMARKS	Quotation #: Email: Foxanne-bix@inverdimenging SD-Solid WP-Wipe OL-Oil PT-Paint CK-Caulk AR-Air
	014	PARADIGM LA SAMPLE NUMBER	meng,

ige for sample co	see additional page for sample conditions.					
- f					ĺ	
(reverse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	please indicate EDD needed:	please indicate package needed:		please indicate date needed:	
	3-c ice 1 3/23/12 16:12	Other EDD	Other	Q	Date Needed	
550					Rush 1 day	
5	MATRIAL WAY TOWN		Category B	<u> </u>	Rush 2 day	
	m yesh 3	NYSDEC EDD X	Category A	Ω Ω	Rush 3 day	
	Relinquished By Date/Time	Basic EDD	Batch QC		10 day	
Total Cost:	Samples by Date/Time	None Required	None Required	X Z	Standard 5 day	
20	TRANSPORT SIEX 3/2422 1500	fees may apply.	Availability contingent upon lab approval; additional fees may apply.	y contingent u	Availabilit	
		lements	Report Supplements	Time	Turnaround Time	

Page 39 of 40 P

272

Chain of Custody Supplement

Client:	Inventum	Completed by:	Mollpail
Lab Project ID:	221212	Date:	3/23/22
	Sample Conditi Per NELAC/ELAP 2	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements u No	ipon receipt N/A
Container Type		5035 SUDA	
Comments	Transferd of to 2-5	502 gluniars	
Transferred to method- compliant container	P13 +0663 -01,03		
Headspace (<1 mL) Comments	transferral 02,03 to	1200 ml amber,	las
Preservation Comments			
hlorine Absent <0.10 ppm per test strip) Comments			
olding Time Comments			
e mperature Comments	3°C; and		
ompliant Sample Quantity/Ty			
Comments			

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

221322

Referencing

Battery Brick

Prepared

Tuesday, April 5, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date An	alyzed
1,1-Biphenyl	< 284	ug/Kg	3/30/202	2 13:50
1,2,4,5-Tetrachlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,2,4-Trichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,2-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,3-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,4-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
2,2-Oxybis (1-chloropropane)	< 284	ug/Kg	3/30/202	2 13:50
2,3,4,6-Tetrachlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4,5-Trichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4,6-Trichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dimethylphenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dinitrophenol	< 1140	ug/Kg	3/30/202	2 13:50
2,4-Dinitrotoluene	< 284	ug/Kg	3/30/202	2 13:50
2,6-Dinitrotoluene	< 284	ug/Kg	3/30/202	2 13:50
2-Chloronaphthalene	< 284	ug/Kg	3/30/202	2 13:50
2-Chlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2-Methylnapthalene	< 284	ug/Kg	3/30/202	2 13:50
2-Methylphenol	< 284	ug/Kg	3/30/202	2 13:50
2-Nitroaniline	< 284	ug/Kg	3/30/202	2 13:50
2-Nitrophenol	< 284	ug/Kg	3/30/202	2 13:50
3&4-Methylphenol	< 284	ug/Kg	3/30/202	2 13:50
3,3'-Dichlorobenzidine	< 284	ug/Kg	3/30/202	2 13:50
3-Nitroaniline	< 284	ug/Kg	3/30/202	2 13:50
4,6-Dinitro-2-methylphenol	< 380	ug/Kg	3/30/202	2 13:50
4-Bromophenyl phenyl ether	< 284	ug/Kg	3/30/202	2 13:50
4-Chloro-3-methylphenol	< 284	ug/Kg	3/30/202	2 13:50
4-Chloroaniline	< 284	ug/Kg	3/30/202	2 13:50

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

4-Chlorophenyl phenyl ether	< 284	ug/Kg	3/30/2022 13:50
4-Nitroaniline	< 284	ug/Kg	3/30/2022 13:50
4-Nitrophenol	< 284	ug/Kg	3/30/2022 13:50
Acenaphthene	< 284	ug/Kg	3/30/2022 13:50
Acenaphthylene	< 284	ug/Kg	3/30/2022 13:50
Acetophenone	< 284	ug/Kg	3/30/2022 13:50
Anthracene	< 284	ug/Kg	3/30/2022 13:50
Atrazine	< 284	ug/Kg	3/30/2022 13:50
Benzaldehyde	< 284	ug/Kg	3/30/2022 13:50
Benzo (a) anthracene	< 284	ug/Kg	3/30/2022 13:50
Benzo (a) pyrene	< 284	ug/Kg	3/30/2022 13:50
Benzo (b) fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Benzo (g,h,i) perylene	< 284	ug/Kg	3/30/2022 13:50
Benzo (k) fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Bis (2-chloroethoxy) methane	< 284	ug/Kg	3/30/2022 13:50
Bis (2-chloroethyl) ether	< 284	ug/Kg	3/30/2022 13:50
Bis (2-ethylhexyl) phthalate	< 284	ug/Kg	3/30/2022 13:50
Butylbenzylphthalate	< 284	ug/Kg	3/30/2022 13:50
Caprolactam	< 284	ug/Kg	3/30/2022 13:50
Carbazole	< 284	ug/Kg	3/30/2022 13:50
Chrysene	< 284	ug/Kg	3/30/2022 13:50
Dibenz (a,h) anthracene	< 284	ug/Kg	3/30/2022 13:50
Dibenzofuran	< 284	ug/Kg	3/30/2022 13:50
Diethyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Dimethyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Di-n-butyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Di-n-octylphthalate	< 284	ug/Kg	3/30/2022 13:50
Fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Fluorene	< 284	ug/Kg	3/30/2022 13:50
Hexachlorobenzene	< 284	ug/Kg	3/30/2022 13:50

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

Hexachlorobutadiene	< 284	ug/Kg	3/30/2022 13:50
Hexachlorocyclopentadiene	< 1140	ug/Kg	3/30/2022 13:50
Hexachloroethane	< 284	ug/Kg	3/30/2022 13:50
Indeno (1,2,3-cd) pyrene	< 284	ug/Kg	3/30/2022 13:50
Isophorone	< 284	ug/Kg	3/30/2022 13:50
Naphthalene	< 284	ug/Kg	3/30/2022 13:50
Nitrobenzene	< 284	ug/Kg	3/30/2022 13:50
N-Nitroso-di-n-propylamine	< 284	ug/Kg	3/30/2022 13:50
N-Nitrosodiphenylamine	< 284	ug/Kg	3/30/2022 13:50
Pentachlorophenol	< 568	ug/Kg	3/30/2022 13:50
Phenanthrene	< 284	ug/Kg	3/30/2022 13:50
Phenol	< 284	ug/Kg	3/30/2022 13:50
Pyrene	< 284	ug/Kg	3/30/2022 13:50

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	56.9	35.4 - 92.4		3/30/2022	13:50
2-Fluorobiphenyl	52.5	39.6 - 84.4		3/30/2022	13:50
2-Fluorophenol	57.2	35.5 - 78.9		3/30/2022	13:50
Nitrobenzene-d5	45.2	36.5 - 78.2		3/30/2022	13:50
Phenol-d5	58.1	37.1 - 78.3		3/30/2022	13:50
Terphenyl-d14	56.4	42.3 - 103		3/30/2022	13:50

Method Reference(s): EPA 8270D EPA 3546
Preparation Date: 3/30/2022

Preparation Date: 3/30/2022 **Data File:** B60764.D

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1,2,2-Tetrachloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1,2-Trichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1-Dichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1-Dichloroethene	< 8.00	ug/Kg		4/4/2022 13:36

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

1,2,3-Trichlorobenzene	< 20.0	ug/Kg	4/4/2022 13:36
1,2,4-Trichlorobenzene	< 20.0	ug/Kg	4/4/2022 13:36
1,2-Dibromo-3-Chloropropane	< 40.0	ug/Kg	4/4/2022 13:36
1,2-Dibromoethane	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichloroethane	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichloropropane	< 8.00	ug/Kg	4/4/2022 13:36
1,3-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,4-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,4-Dioxane	< 40.0	ug/Kg	4/4/2022 13:36
2-Butanone	< 40.0	ug/Kg	4/4/2022 13:36
2-Hexanone	< 20.0	ug/Kg	4/4/2022 13:36
4-Methyl-2-pentanone	< 20.0	ug/Kg	4/4/2022 13:36
Acetone	< 40.0	ug/Kg	4/4/2022 13:36
Benzene	< 8.00	ug/Kg	4/4/2022 13:36
Bromochloromethane	< 20.0	ug/Kg	4/4/2022 13:36
Bromodichloromethane	< 8.00	ug/Kg	4/4/2022 13:36
Bromoform	< 20.0	ug/Kg	4/4/2022 13:36
Bromomethane	< 8.00	ug/Kg	4/4/2022 13:36
Carbon disulfide	< 8.00	ug/Kg	4/4/2022 13:36
Carbon Tetrachloride	< 8.00	ug/Kg	4/4/2022 13:36
Chlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
Chloroethane	< 8.00	ug/Kg	4/4/2022 13:36
Chloroform	< 8.00	ug/Kg	4/4/2022 13:36
Chloromethane	< 8.00	ug/Kg	4/4/2022 13:36
cis-1,2-Dichloroethene	< 8.00	ug/Kg	4/4/2022 13:36
cis-1,3-Dichloropropene	< 8.00	ug/Kg	4/4/2022 13:36
Cyclohexane	< 40.0	ug/Kg	4/4/2022 13:36
Dibromochloromethane	< 8.00	ug/Kg	4/4/2022 13:36
Dichlorodifluoromethane	< 8.00	ug/Kg	4/4/2022 13:36

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

S	urrogate	Percent R	ecovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
	Vinyl chloride	< 8.00	ug/Kg			4/4/2022	13:36
	Trichlorofluoromethane	< 8.00	ug/Kg			4/4/2022	13:36
	Trichloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	trans-1,3-Dichloropropene	< 8.00	ug/Kg			4/4/2022	13:36
	trans-1,2-Dichloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	Toluene	< 8.00	ug/Kg			4/4/2022	13:36
	Tetrachloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	Styrene	< 20.0	ug/Kg			4/4/2022	13:36
	o-Xylene	< 8.00	ug/Kg			4/4/2022	13:36
	Methylene chloride	< 20.0	ug/Kg			4/4/2022	13:36
	Methylcyclohexane	< 8.00	ug/Kg			4/4/2022	13:36
	Methyl tert-butyl Ether	< 8.00	ug/Kg			4/4/2022	13:36
	Methyl acetate	< 8.00	ug/Kg			4/4/2022	13:36
	m,p-Xylene	< 8.00	ug/Kg			4/4/2022	13:36
	Isopropylbenzene	< 8.00	ug/Kg			4/4/2022	13:36
	Freon 113	< 8.00	ug/Kg			4/4/2022	13:36
	Ethylbenzene	< 8.00	ug/Kg			4/4/2022	13:36

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
1,2-Dichloroethane-d4	125	74.7 - 140		4/4/2022	13:36
4-Bromofluorobenzene	96.5	68 - 130		4/4/2022	13:36
Pentafluorobenzene	122	70.3 - 140		4/4/2022	13:36
Toluene-D8	124	69 - 138		4/4/2022	13:36

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08191.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01A **Date Sampled:** 3/28/2022 14:00

Matrix: TCLP Extract Date Received 3/29/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	4/1/2022 18:49
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	4/1/2022 18:49
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	4/1/2022 18:49
2,4-Dinitrotoluene	< 40.0	ug/L	130	4/1/2022 18:49
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	4/1/2022 18:49
Hexachlorobenzene	< 40.0	ug/L	130	4/1/2022 18:49
Hexachlorobutadiene	< 40.0	ug/L	500	4/1/2022 18:49
Hexachloroethane	< 40.0	ug/L	3000	4/1/2022 18:49
Nitrobenzene	< 40.0	ug/L	2000	4/1/2022 18:49
Pentachlorophenol	< 80.0	ug/L	100000	4/1/2022 18:49
Pyridine	< 40.0	ug/L	5000	4/1/2022 18:49

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	88.9	29.6 - 139		4/1/2022	18:49
2-Fluorobiphenyl	65.8	5 - 124		4/1/2022	18:49
2-Fluorophenol	73.3	10 - 122		4/1/2022	18:49
Nitrobenzene-d5	71.8	28.7 - 119		4/1/2022	18:49
Phenol-d5	66.9	10 - 115		4/1/2022	18:49
Terphenyl-d14	77.8	32.2 - 142		4/1/2022	18:49

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 4/1/2022 Data File: 860808.D

TCLP Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	4/1/2022 15:32
1,2-Dichloroethane	< 20.0	ug/L	500	4/1/2022 15:32
2-Butanone	< 100	ug/L	200000	4/1/2022 15:32
Benzene	< 20.0	ug/L	500	4/1/2022 15:32

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01A **Date Sampled:** 3/28/2022 14:00

Matrix: TCLP Extract Date Received 3/29/2022

Carbon Tetrachloride	< 20.0	ug/L	500		4/1/20	22 15:32
Chlorobenzene	< 20.0	ug/L	100000		4/1/20	22 15:32
Chloroform	< 20.0	ug/L	6000		4/1/20	22 15:32
Tetrachloroethene	< 20.0	ug/L	700		4/1/20	22 15:32
Trichloroethene	< 20.0	ug/L	500		4/1/20	22 15:32
Vinyl chloride	< 20.0	ug/L	200		4/1/20	22 15:32
<u>Surrogate</u>	Percent Recovery		<u>Limits</u>	Outliers	Date An	alyzed
1,2-Dichloroethane-d4		131	81.1 - 136		4/1/2022	15:32
4-Bromofluorobenzene		104	75.8 - 132		4/1/2022	15:32
Pentafluorobenzene		129	82 - 132		4/1/2022	15:32
Toluene-D8		132	64.6 - 137		4/1/2022	15:32

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08162.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

122

CHAIN OF CUSTODY

3/26/26/26/2	DATE COLLECTED C	7	RIPS ROLL	PROJECT REFERENCE				PAR
1460	TIME	11.17	27	REFERE				PARADIGM
	m → − o o o o o o o			NCE		٦	V.	3
	ໝ ≽ ≂ ด							
Brick-662-0328200	SAMPLE IDENTIFIER		ous Liquid Aqueous Liquid	NOT BIOMHAND ON WELLES & JOHN WILL	X15-25	HEWYEN STATE SPINO	ADDRESS THE HOLD BY SOIR C	CLIENTS TO LOS TO
\$	X - X - X = X		WA - Water WG - Groundwater	GM		70	()	
	TO BUBBEL BUBBEL CLP & W. 8-70 CL & W. 8-70	REQUESTED ANAL		ATTHE SOHN BLACK	PHONE:	CITY: STATE:	ADDRESS:	CLIENT: CAME
		S	SO - Soil SL - Sludge			ZIP:		ç
	REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk		Email:	Quotation #:	1221322	LAB PROJECT ID
014	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air					

See additional page for sample conditions.

By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

10 day

Standard 5 day

None Required

Turnaround Time

Availability contingent upon lab approval; additional fees may apply.

Report Supplements

Rush 3 day Rush 2 day

Batch QC
Category A
Category B

None Required
Basic EDD
NYSDEC EDD

Date Needed ______ please indicate date needed:

please indicate package needed:

Other EDD

S'C ice J 3

129/12

Date/Time

136/20

Total Cost:

)lease indicate EDD needed :

2012

Chain of Custody Supplement

Client:	Inventum	Completed by:	MyllyVail
Lab Project ID:	221322	Date:	3/29/22
		ition Requirements 2210/241/242/243/244	
Condition	NELAC compliance with the samp Yes	ole condition requirements u No	pon receipt N/A
Container Type		5 035	
Comments	Sangle revdin plastie	Buy transferred to 10	booml-wiemouth glassian
Transferred to method- compliant container	proto me		
Headspace (<1 mL) Comments		tengrost	
Preservation Comments			
Chlorine Absent <0.10 ppm per test strip) Comments			
Holding Time Comments			
emperature Comments	5°ciul		
ompliant Sample Quantity/T Comments	уре		

Attachment C – Import Request Form

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND
The allowable site use is: Commercial or Industrial Use
Have Ecological Resources been identified? yes
Is this soil originating from the site? yes
How many cubic yards of soil will be imported/reused? 800-1000
If greater than 1000 cubic yards will be imported, enter volume to be imported: NA
SECTION 2 – MATERIAL OTHER THAN SOIL
Is the material to be imported gravel, rock or stone? no
Does it contain less than 10%, by weight, material that would pass a size 80 sieve? no
Is this virgin material from a permitted mine or quarry? no
Is this material recycled concrete or brick from a DEC registered processing facility? no
SECTION 3 - SAMPLING
Provide a brief description of the number and type of samples collected in the space below:
17 discrete samples of brick were collected and analyzed for asbestos. 4 discrete samples (1 from 4 types of brick identified) were collected, crushed, and analyzed for TCL and TCLP VOCs and SVOCs.
Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.
If the material meets requirements of DER 10 section 5.5 (other material) no chemical testing needed

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

Evaluation tables are attached.

Note that the 17 ACM samples tested negative for asbestos.

Note that the 4 samples were all nearly non-detect. The sample of red brick contained Chrysene at 301 ug/Kg, Fluoranthene at 499 ug/Kg, and Phenanthrene at 431 ug/Kg, all below their respective Residential SCOs.

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

Riverview Innovation and Technology Campus (RITC), Site Owner

Location where fill was obtained:

Site structure - brick from the former Battery

Identification of any state or local approvals as a fill source:

NA

If no approvals are available, provide a brief history of the use of the property that is the fill source:

The property was historically a Coke Plant. The Battery was a structure constructed of steel coking ovens and brick. It underwent controlled demolition for asbestos containing materials. The brick was not visually impacted by the former plant processes and tested negative for asbestos.

Note that this Import Request supports the Backfill Exhaust Tunnel Battery No.2 IRM Workplan submitted June 18th, 2022.

Provide a list of supporting documentation included with this request:

- 1. Battery Brick Evaluation Table
- 2. Laboratory Reports
- 3. A volume estimate for the quantity of brick proposed to backfill the open Battery exhaust tunnel.

The information provided on this form is accurate and complete.

Signature

John P. Black, P.E

Print Name

Inventum Engineering

Firm

1. Table 1: Battery Brick Evaluation

Table 1 Analytical Data Battery Brick and Refractory Riverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units		C-MULTI- 222022	BRICK-RED- 03222022		BRICK-YELW-03222022		BRICK-GRAY-03222022		
<u>Contents</u>			Refrac	tory Brick	Red	d Brick	Yello	w Brick	Gre	Grey Brick	
ocation_				attery		attery		attery		attery	
ocation				attery		тест у		attery		attery	
SW8260C											
1,1,1-Trichloroethane (TCA)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,1,2,2-Tetrachloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,1,2-Trichloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,1-Dichloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,1-Dichloroethene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,2,3-Trichlorobenzene		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
1,2,4-Trichlorobenzene		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
1,2-Dibromo-3-Chloropropane		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U	
1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,2-Dichlorobenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,2-Dichloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,2-Dichloropropane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ug/kg	<8.33 <8.33	U	<9.62	U	<5.71 <5.71	U	<8.00 <8.00	U	
,		ug/kg	<8.33 <41.7	U	<9.62 <48.1	U		U	<8.00 <40.0	U	
1,4-Dioxane (P-Dioxane)		ug/kg	<41.7	U	<48.1	U	<28.6 <28.6	U	<40.0	U	
Methyl Ethyl Ketone (2-Butanone) 2-Hexanone		ug/kg ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
Acetone		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U	
Benzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Bromochloromethane		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
Bromodichloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Bromoform		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
Bromomethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Carbon Disulfide		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Carbon Tetrachloride		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Chlorobenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Chloroethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Chloroform		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Chloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Cyclohexane		ug/kg	<41.7	U	<48.1	U	<28.6	U	<40.0	U	
Dibromochloromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Dichlorodifluoromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Methylene Chloride		ug/kg	<20.8	U	<24.0	U	<14.3	U	<20.0	U	
Ethylbenzene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
sopropylbenzene (Cumene)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Methyl Acetate		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Fert-Butyl Methyl Ether		ug/kg	<8.33		<9.62	U	<5.71	U	<8.00	U	
Methylcyclohexane		ug/kg	<8.33	U	<9.62 <24.0	U	<5.71 <14.3	U	<8.00 <20.0	U	
Styrene Fetrachloroethylene (PCE)		ug/kg ug/kg	<20.8 <8.33	U	<9.62	U	<14.3 <5.71	U	<20.0 <8.00	U	
Foluene		ug/kg ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Frichloroethylene (TCE)		ug/kg ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Frichlorofluoromethane		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
/inyl Chloride		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Cis-1,2-Dichloroethylene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Cis-1,3-Dichloropropene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
m,p-Xylene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
D-Xylene (1,2-Dimethylbenzene)		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Frans-1,2-Dichloroethene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	
Frans-1,3-Dichloropropene		ug/kg	<8.33	U	<9.62	U	<5.71	U	<8.00	U	

Table 1 Analytical Data Battery Brick and Refractory Riverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units		MULTI- 22022		K-RED- 22022	BRICK-YELW-03222022		BRICK-GRA	BRICK-GRAY-03222022	
<u>Contents</u>			Refract	ory Brick	Red	Brick	Yello	w Brick	Grey	Brick	
<u>Location</u>			Battery		Battery		Battery		Bat	ttery	
<u>SW8270D</u> 1,2,4,5-Tetrachlorobenzene	ı	lug/kg	<284	lυ	<278	lυ	<269	lυ	<284	lυ	
2,3,4,6-Tetrachlorophenol		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
2,4,5-Trichlorophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
2,4,6-Trichlorophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
2,4-Dichlorophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
2,4-Dimethylphenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
2,4-Dinitrophenol		ug/kg	<1140	U	<1110	U	<1080	U	<1140	U	
2,4-Dinitrotoluene 2,6-Dinitrotoluene		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U	
2-Chloronaphthalene		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
2-Chlorophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
2-Methylnaphthalene		ug/kg	<284	U	<278	U	<269	U	<284	U	
2-Methylphenol (O-Cresol)		ug/kg	<284	U	<278	U	<269	U	<284	U	
2-Nitroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U	
2-Nitrophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
3,3'-Dichlorobenzidine		ug/kg	<284	U	<278	U	<269	U	<284	U	
Cresols, M & P 3-Nitroaniline		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U	
4,6-Dinitro-2-Methylphenol		ug/kg ug/kg	<380	U	<372	U	<360	U	<380	U	
4-Bromophenyl Phenyl Ether		ug/kg	<284	U	<278	U	<269	U	<284	U	
4-Chloro-3-Methylphenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
4-Chloroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U	
4-Chlorophenyl Phenyl Ether		ug/kg	<284	U	<278	U	<269	U	<284	U	
4-Nitroaniline		ug/kg	<284	U	<278	U	<269	U	<284	U	
4-Nitrophenol		ug/kg	<284	U	<278	U	<269	U	<284	U	
Acenaphthene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Acetophenone		ug/kg ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U	
Anthracene		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
Atrazine		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzo(A)Anthracene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzaldehyde		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzo(A)Pyrene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzo(B)Fluoranthene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzo(G,H,I)Perylene		ug/kg	<284	U	<278	U	<269 <269	U	<284	U	
Benzo(K)Fluoranthene Biphenyl (Diphenyl)		ug/kg ug/kg	<284 <284	U	<278 <278	U	<269	U	<284 <284	U	
Bis(2-Chloroisopropyl) Ether		ug/kg	<284	U	<278	U	<269	U	<284	U	
Bis(2-Chloroethoxy) Methane		ug/kg	<284	U	<278	U	<269	U	<284	U	
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	<284	U	<278	U	<269	U	<284	U	
Bis(2-Ethylhexyl) Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U	
Benzyl Butyl Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U	
Caprolactam		ug/kg	<284	U	<278	U	<269	U	<284	U	
Carbazole		ug/kg	<284	U	<278	U	<269	U	<284	U	
Chrysene Di-N-Butyl Phthalate		ug/kg ug/kg	<284 <284	U	301 <278	U	<269 <269	U	<284 <284	U	
Di-N-Octylphthalate	 	ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
Dibenz(A,H)Anthracene	<u> </u>	ug/kg	<284	U	<278	U	<269	U	<284	U	
Dibenzofuran		ug/kg	<284	U	<278	U	<269	U	<284	U	
Diethyl Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U	
Dimethyl Phthalate		ug/kg	<284	U	<278	U	<269	U	<284	U	
Fluoranthene		ug/kg	<284	U	499		<269	U	<284	U	
Fluorene	-	ug/kg	<284	U	<278	U	<269	U	<284	U	
Hexachlorobenzene Hexachlorobutadiene		ug/kg	<284 <284	U	<278 <278	U	<269 <269	U	<284 <284	U	
Hexachlorocyclopentadiene Hexachlorocyclopentadiene		ug/kg ug/kg	<284 <1140	U	<1110	U	<1080	U	<1140	U	
Hexachloroethane		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
Indeno(1,2,3-C,D)Pyrene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Isophorone		ug/kg	<284	U	<278	U	<269	U	<284	U	
N-Nitrosodi-N-Propylamine		ug/kg	<284	U	<278	U	<269	U	<284	U	
N-Nitrosodiphenylamine		ug/kg	<284	U	<278	U	<269	U	<284	U	
Naphthalene		ug/kg	<284	U	<278	U	<269	U	<284	U	
Nitrobenzene Postashlorophonel	-	ug/kg	<284	U	<278	U	<269	U	<284	U	
Pentachlorophenol Phenanthrene		ug/kg	<568 <284	U	<556 431	U	<538 <269	U	<568 <284	U	
Phenol		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
Pyrene		ug/kg ug/kg	<284	U	<278	U	<269	U	<284	U	
,	1	- 01 0	1	-	1	t*		ť		<u> </u>	

Table 1 Analytical Data Battery Brick and Refractory Riverview Innovation Technology Camus NYSDEC Site No. C915353 Town of Tonawanda, New York

Analytes	Standards	Units		-MULTI- 22022		CK-RED- 222022	BRICK-YELW-03222022		BRICK-GR	BRICK-GRAY-03222022	
Contents			Refract	Refractory Brick Red Brick		d Brick	Yellow Brick		Grey Brick		
<u>Location</u>			Ва	ttery	Ва	attery	Ва	ittery	В	attery	
									l.		
TCLP - SW8260C											
1,2-Dichloroethane		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Chlorobenzene	100000		<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Tetrachloroethylene (PCE)		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Carbon Tetrachloride		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Chloroform	6000	-	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Benzene		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Vinyl Chloride		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
1,1-Dichloroethene		ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
Methyl Ethyl Ketone (2-Butanone)	200000		<100	U	<100	U	<100	U	<100	U	
Trichloroethylene (TCE)	500	ug/L	<20.0	U	<20.0	U	<20.0	U	<20.0	U	
TOLD CHICATOD											
TCLP - SW8270D	7500	I . n		lu		Ιυ	1.00	lυ		lu	
1,4-Dichlorobenzene	7500	Ů,	<40.0 <40.0	U	<40.0 <40.0	U	<40.0 <40.0	U	<40.0 <40.0	U	
2,4,5-Trichlorophenol	400000			-		-		U		U	
2,4,6-Trichlorophenol	2000		<40.0	U	<40.0	U	<40.0	U	<40.0 <40.0	U	
2,4-Dinitrotoluene	200000	ug/L	<40.0 <80.0	U	<40.0 <80.0	U	<40.0 <80.0	U	<40.0 <80.0	U	
Cresols (as m,p,o-Cresol)			<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Hexachlorobenzene Hexachlorobutadiene	500	ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Hexachloroethane		<u></u> 0,	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Nitrobenzene	2000	ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Pentachlorophenol	100000		<80.0	U	<80.0	U	<80.0	U	<80.0	U	
Pyridine	5000		<40.0	U	<40.0	U	<40.0	U	<40.0	U	
Pyridine	3000	ug/L	<40.0	U	<40.0	U	<40.0	U	<40.0	-0	
										+	
Legend:				1							
Bold	Detected										
U	Not detecte	Not detected above method detection limit									
ND	Non detecte	ed									
NS	Not sample	d									
SU	Standard ur	nits									
PPM	Parts per m	illion									
mg/l	Miligrams p	er liter									
ug/l	Micrograms	per liter									
D	Sample or n	natrix spike (duplicate res	ults above re	elative prero	ent differen	ice limit				
L	Laboratory	control samp	ole recovery	outside acce	pted QC lim	nits					
М	Matrix spike	e recoveries	outside QC	imits. Matrix	bias indica	ted					

2. Laboratory Reports

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

221212

Referencing

Battery Brick

Prepared

Wednesday, March 30, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyz	<u>æd</u>
1,1-Biphenyl	< 284	ug/Kg	3/25/2022 2	22:57
1,2,4,5-Tetrachlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,2,4-Trichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,2-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,3-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
1,4-Dichlorobenzene	< 284	ug/Kg	3/25/2022 2	22:57
2,2-Oxybis (1-chloropropane)	< 284	ug/Kg	3/25/2022 2	22:57
2,3,4,6-Tetrachlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4,5-Trichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4,6-Trichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dichlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dimethylphenol	< 284	ug/Kg	3/25/2022 2	22:57
2,4-Dinitrophenol	< 1140	ug/Kg	3/25/2022 2	22:57
2,4-Dinitrotoluene	< 284	ug/Kg	3/25/2022 2	22:57
2,6-Dinitrotoluene	< 284	ug/Kg	3/25/2022 2	22:57
2-Chloronaphthalene	< 284	ug/Kg	3/25/2022 2	22:57
2-Chlorophenol	< 284	ug/Kg	3/25/2022 2	22:57
2-Methylnapthalene	< 284	ug/Kg	3/25/2022 2	22:57
2-Methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
2-Nitroaniline	< 284	ug/Kg	3/25/2022 2	22:57
2-Nitrophenol	< 284	ug/Kg	3/25/2022 2	22:57
3&4-Methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
3,3'-Dichlorobenzidine	< 284	ug/Kg	3/25/2022 2	22:57
3-Nitroaniline	< 284	ug/Kg	3/25/2022 2	22:57
4,6-Dinitro-2-methylphenol	< 380	ug/Kg	3/25/2022 2	22:57
4-Bromophenyl phenyl ether	< 284	ug/Kg	3/25/2022 2	22:57
4-Chloro-3-methylphenol	< 284	ug/Kg	3/25/2022 2	22:57
4-Chloroaniline	< 284	ug/Kg	3/25/2022 2	22:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 284	ug/Kg	3/25/2022 22:57
4-Nitroaniline	< 284	ug/Kg	3/25/2022 22:57
4-Nitrophenol	< 284	ug/Kg	3/25/2022 22:57
Acenaphthene	< 284	ug/Kg	3/25/2022 22:57
Acenaphthylene	< 284	ug/Kg	3/25/2022 22:57
Acetophenone	< 284	ug/Kg	3/25/2022 22:57
Anthracene	< 284	ug/Kg	3/25/2022 22:57
Atrazine	< 284	ug/Kg	3/25/2022 22:57
Benzaldehyde	< 284	ug/Kg	3/25/2022 22:57
Benzo (a) anthracene	< 284	ug/Kg	3/25/2022 22:57
Benzo (a) pyrene	< 284	ug/Kg	3/25/2022 22:57
Benzo (b) fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Benzo (g,h,i) perylene	< 284	ug/Kg	3/25/2022 22:57
Benzo (k) fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Bis (2-chloroethoxy) methane	< 284	ug/Kg	3/25/2022 22:57
Bis (2-chloroethyl) ether	< 284	ug/Kg	3/25/2022 22:57
Bis (2-ethylhexyl) phthalate	< 284	ug/Kg	3/25/2022 22:57
Butylbenzylphthalate	< 284	ug/Kg	3/25/2022 22:57
Caprolactam	< 284	ug/Kg	3/25/2022 22:57
Carbazole	< 284	ug/Kg	3/25/2022 22:57
Chrysene	< 284	ug/Kg	3/25/2022 22:57
Dibenz (a,h) anthracene	< 284	ug/Kg	3/25/2022 22:57
Dibenzofuran	< 284	ug/Kg	3/25/2022 22:57
Diethyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Dimethyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Di-n-butyl phthalate	< 284	ug/Kg	3/25/2022 22:57
Di-n-octylphthalate	< 284	ug/Kg	3/25/2022 22:57
Fluoranthene	< 284	ug/Kg	3/25/2022 22:57
Fluorene	< 284	ug/Kg	3/25/2022 22:57
Hexachlorobenzene	< 284	ug/Kg	3/25/2022 22:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 284	ug/Kg	3/25/2022 22:57
Hexachlorocyclopentadiene	< 1140	ug/Kg	3/25/2022 22:57
Hexachloroethane	< 284	ug/Kg	3/25/2022 22:57
Indeno (1,2,3-cd) pyrene	< 284	ug/Kg	3/25/2022 22:57
Isophorone	< 284	ug/Kg	3/25/2022 22:57
Naphthalene	< 284	ug/Kg	3/25/2022 22:57
Nitrobenzene	< 284	ug/Kg	3/25/2022 22:57
N-Nitroso-di-n-propylamine	< 284	ug/Kg	3/25/2022 22:57
N-Nitrosodiphenylamine	< 284	ug/Kg	3/25/2022 22:57
Pentachlorophenol	< 568	ug/Kg	3/25/2022 22:57
Phenanthrene	< 284	ug/Kg	3/25/2022 22:57
Phenol	< 284	ug/Kg	3/25/2022 22:57
Pyrene	< 284	ug/Kg	3/25/2022 22:57

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	62.8	35.4 - 92.4		3/25/2022	22:57
2-Fluorobiphenyl	62.2	39.6 - 84.4		3/25/2022	22:57
2-Fluorophenol	50.3	35.5 - 78.9		3/25/2022	22:57
Nitrobenzene-d5	50.7	36.5 - 78.2		3/25/2022	22:57
Phenol-d5	55.1	37.1 - 78.3		3/25/2022	22:57
Terphenyl-d14	71.0	42.3 - 103		3/25/2022	22:57

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8270D EPA 3546

Preparation Date: 3/24/2022 **Data File:** B60684.D

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1,2,2-Tetrachloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1,2-Trichloroethane	< 8.33	ug/Kg		3/29/2022 16:57
1,1-Dichloroethane	< 8.33	ug/Kg		3/29/2022 16:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

1,1-Dichloroethene	< 8.33	ug/Kg	3/29/2022 16:57
1,2,3-Trichlorobenzene	< 20.8	ug/Kg	3/29/2022 16:57
1,2,4-Trichlorobenzene	< 20.8	ug/Kg	3/29/2022 16:57
1,2-Dibromo-3-Chloropropane	< 41.7	ug/Kg	3/29/2022 16:57
1,2-Dibromoethane	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichloroethane	< 8.33	ug/Kg	3/29/2022 16:57
1,2-Dichloropropane	< 8.33	ug/Kg	3/29/2022 16:57
1,3-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,4-Dichlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
1,4-Dioxane	< 41.7	ug/Kg	3/29/2022 16:57
2-Butanone	< 41.7	ug/Kg	3/29/2022 16:57
2-Hexanone	< 20.8	ug/Kg	3/29/2022 16:57
4-Methyl-2-pentanone	< 20.8	ug/Kg	3/29/2022 16:57
Acetone	< 41.7	ug/Kg	3/29/2022 16:57
Benzene	< 8.33	ug/Kg	3/29/2022 16:57
Bromochloromethane	< 20.8	ug/Kg	3/29/2022 16:57
Bromodichloromethane	< 8.33	ug/Kg	3/29/2022 16:57
Bromoform	< 20.8	ug/Kg	3/29/2022 16:57
Bromomethane	< 8.33	ug/Kg	3/29/2022 16:57
Carbon disulfide	< 8.33	ug/Kg	3/29/2022 16:57
Carbon Tetrachloride	< 8.33	ug/Kg	3/29/2022 16:57
Chlorobenzene	< 8.33	ug/Kg	3/29/2022 16:57
Chloroethane	< 8.33	ug/Kg	3/29/2022 16:57
Chloroform	< 8.33	ug/Kg	3/29/2022 16:57
Chloromethane	< 8.33	ug/Kg	3/29/2022 16:57
cis-1,2-Dichloroethene	< 8.33	ug/Kg	3/29/2022 16:57
cis-1,3-Dichloropropene	< 8.33	ug/Kg	3/29/2022 16:57
Cyclohexane	< 41.7	ug/Kg	3/29/2022 16:57
Dibromochloromethane	< 8.33	ug/Kg	3/29/2022 16:57

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Dichlorodifluoromethane	< 8.33	ug/Kg			3/29/20	22 16:57
Ethylbenzene	< 8.33	ug/Kg			3/29/20	22 16:57
Freon 113	< 8.33	ug/Kg			3/29/20	22 16:57
Isopropylbenzene	< 8.33	ug/Kg			3/29/20	22 16:57
m,p-Xylene	< 8.33	ug/Kg			3/29/20	22 16:57
Methyl acetate	< 8.33	ug/Kg			3/29/20	22 16:57
Methyl tert-butyl Ether	< 8.33	ug/Kg			3/29/20	22 16:57
Methylcyclohexane	< 8.33	ug/Kg			3/29/20	22 16:57
Methylene chloride	< 20.8	ug/Kg			3/29/20	22 16:57
o-Xylene	< 8.33	ug/Kg			3/29/20	22 16:57
Styrene	< 20.8	ug/Kg			3/29/20	22 16:57
Tetrachloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
Toluene	< 8.33	ug/Kg			3/29/20	22 16:57
trans-1,2-Dichloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
trans-1,3-Dichloropropene	< 8.33	ug/Kg			3/29/20	22 16:57
Trichloroethene	< 8.33	ug/Kg			3/29/20	22 16:57
Trichlorofluoromethane	< 8.33	ug/Kg			3/29/20	22 16:57
Vinyl chloride	< 8.33	ug/Kg			3/29/20	22 16:57
<u>Surrogate</u>	Perc	ent Recovery	<u>Limits</u>	Outliers	Date An	alyzed
1,2-Dichloroethane-d4		120	74.7 - 140		3/29/2022	16:57
4-Bromofluorobenzene		93.9	68 - 130		3/29/2022	16:57

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08073.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

70.3 - 140

69 - 138

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

115

119

Pentafluorobenzene

Toluene-D8

16:57

16:57

3/29/2022

3/29/2022

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limi	t Qualifier	Date An	<u>alyzed</u>
1,4-Dichlorobenzene	< 40.0	ug/L	7500		3/28/202	22 17:46
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		3/28/202	22 17:46
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		3/28/202	22 17:46
2,4-Dinitrotoluene	< 40.0	ug/L	130		3/28/202	22 17:46
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		3/28/202	22 17:46
Hexachlorobenzene	< 40.0	ug/L	130		3/28/202	22 17:46
Hexachlorobutadiene	< 40.0	ug/L	500		3/28/202	22 17:46
Hexachloroethane	< 40.0	ug/L	3000		3/28/202	22 17:46
Nitrobenzene	< 40.0	ug/L	2000		3/28/202	22 17:46
Pentachlorophenol	< 80.0	ug/L	100000		3/28/202	22 17:46
Pyridine	< 40.0	ug/L	5000		3/28/202	22 17:46
<u>Surrogate</u>	Percei	nt Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
2.4.6-Tribromophenol		90.3	29.6 - 139		3/28/2022	17:46

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	alyzed
2,4,6-Tribromophenol	90.3	29.6 - 139		3/28/2022	17:46
2-Fluorobiphenyl	69.5	5 - 124		3/28/2022	17:46
2-Fluorophenol	71.9	10 - 122		3/28/2022	17:46
Nitrobenzene-d5	65.8	28.7 - 119		3/28/2022	17:46
Phenol-d5	64.5	10 - 115		3/28/2022	17:46
Terphenyl-d14	80.4	32.2 - 142		3/28/2022	17:46

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60704.D

TCLP Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 15:59
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 15:59
2-Butanone	< 100	ug/L	200000	3/29/2022 15:59
Benzene	< 20.0	ug/L	500	3/29/2022 15:59

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Multi-03222022

Lab Sample ID: 221212-01A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 15:59
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 15:59
Chloroform	< 20.0	ug/L	6000		3/29/20	22 15:59
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 15:59
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 15:59
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 15:59
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		118	81.1 - 136		3/29/2022	15:59
4-Bromofluorobenzene		98.0	75.8 - 132		3/29/2022	15:59
Pentafluorobenzene		114	82 - 132		3/29/2022	15:59
Toluene-D8		116	64.6 - 137		3/29/2022	15:59

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08070.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed	
1,1-Biphenyl	< 278	ug/Kg	3/25/2022 03:4:	3
1,2,4,5-Tetrachlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,2,4-Trichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,2-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,3-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
1,4-Dichlorobenzene	< 278	ug/Kg	3/25/2022 03:4:	3
2,2-Oxybis (1-chloropropane)	< 278	ug/Kg	3/25/2022 03:4:	3
2,3,4,6-Tetrachlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4,5-Trichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4,6-Trichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dichlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dimethylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
2,4-Dinitrophenol	< 1110	ug/Kg	3/25/2022 03:4:	3
2,4-Dinitrotoluene	< 278	ug/Kg	3/25/2022 03:4:	3
2,6-Dinitrotoluene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Chloronaphthalene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Chlorophenol	< 278	ug/Kg	3/25/2022 03:4:	3
2-Methylnapthalene	< 278	ug/Kg	3/25/2022 03:4:	3
2-Methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
2-Nitroaniline	< 278	ug/Kg	3/25/2022 03:4:	3
2-Nitrophenol	< 278	ug/Kg	3/25/2022 03:4:	3
3&4-Methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
3,3'-Dichlorobenzidine	< 278	ug/Kg	3/25/2022 03:4:	3
3-Nitroaniline	< 278	ug/Kg	3/25/2022 03:4:	3
4,6-Dinitro-2-methylphenol	< 372	ug/Kg	3/25/2022 03:4:	3
4-Bromophenyl phenyl ether	< 278	ug/Kg	3/25/2022 03:4:	3
4-Chloro-3-methylphenol	< 278	ug/Kg	3/25/2022 03:4:	3
4-Chloroaniline	< 278	ug/Kg	3/25/2022 03:4:	3

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 278	ug/Kg	3/25/2022 03:43
4-Nitroaniline	< 278	ug/Kg	3/25/2022 03:43
4-Nitrophenol	< 278	ug/Kg	3/25/2022 03:43
Acenaphthene	< 278	ug/Kg	3/25/2022 03:43
Acenaphthylene	< 278	ug/Kg	3/25/2022 03:43
Acetophenone	< 278	ug/Kg	3/25/2022 03:43
Anthracene	< 278	ug/Kg	3/25/2022 03:43
Atrazine	< 278	ug/Kg	3/25/2022 03:43
Benzaldehyde	< 278	ug/Kg	3/25/2022 03:43
Benzo (a) anthracene	< 278	ug/Kg	3/25/2022 03:43
Benzo (a) pyrene	< 278	ug/Kg	3/25/2022 03:43
Benzo (b) fluoranthene	< 278	ug/Kg	3/25/2022 03:43
Benzo (g,h,i) perylene	< 278	ug/Kg	3/25/2022 03:43
Benzo (k) fluoranthene	< 278	ug/Kg	3/25/2022 03:43
Bis (2-chloroethoxy) methane	< 278	ug/Kg	3/25/2022 03:43
Bis (2-chloroethyl) ether	< 278	ug/Kg	3/25/2022 03:43
Bis (2-ethylhexyl) phthalate	< 278	ug/Kg	3/25/2022 03:43
Butylbenzylphthalate	< 278	ug/Kg	3/25/2022 03:43
Caprolactam	< 278	ug/Kg	3/25/2022 03:43
Carbazole	< 278	ug/Kg	3/25/2022 03:43
Chrysene	301	ug/Kg	3/25/2022 03:43
Dibenz (a,h) anthracene	< 278	ug/Kg	3/25/2022 03:43
Dibenzofuran	< 278	ug/Kg	3/25/2022 03:43
Diethyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Dimethyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Di-n-butyl phthalate	< 278	ug/Kg	3/25/2022 03:43
Di-n-octylphthalate	< 278	ug/Kg	3/25/2022 03:43
Fluoranthene	499	ug/Kg	3/25/2022 03:43
Fluorene	< 278	ug/Kg	3/25/2022 03:43
Hexachlorobenzene	< 278	ug/Kg	3/25/2022 03:43

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 278	ug/Kg	3/25/2022 03:43
Hexachlorocyclopentadiene	< 1110	ug/Kg	3/25/2022 03:43
Hexachloroethane	< 278	ug/Kg	3/25/2022 03:43
Indeno (1,2,3-cd) pyrene	< 278	ug/Kg	3/25/2022 03:43
Isophorone	< 278	ug/Kg	3/25/2022 03:43
Naphthalene	< 278	ug/Kg	3/25/2022 03:43
Nitrobenzene	< 278	ug/Kg	3/25/2022 03:43
N-Nitroso-di-n-propylamine	< 278	ug/Kg	3/25/2022 03:43
N-Nitrosodiphenylamine	< 278	ug/Kg	3/25/2022 03:43
Pentachlorophenol	< 556	ug/Kg	3/25/2022 03:43
Phenanthrene	431	ug/Kg	3/25/2022 03:43
Phenol	< 278	ug/Kg	3/25/2022 03:43
Pyrene	< 278	ug/Kg	3/25/2022 03:43

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	62.6	35.4 - 92.4		3/25/2022	03:43
2-Fluorobiphenyl	46.8	39.6 - 84.4		3/25/2022	03:43
2-Fluorophenol	54.9	35.5 - 78.9		3/25/2022	03:43
Nitrobenzene-d5	40.3	36.5 - 78.2		3/25/2022	03:43
Phenol-d5	62.9	37.1 - 78.3		3/25/2022	03:43
Terphenyl-d14	62.8	42.3 - 103		3/25/2022	03:43

Method Reference(s): EPA 8270D
EPA 3546
Preparation Date: 3/24/2022
Data File: B60650.D

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1,2,2-Tetrachloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1,2-Trichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1-Dichloroethane	< 9.62	ug/Kg		3/29/2022 17:16
1,1-Dichloroethene	< 9.62	ug/Kg		3/29/2022 17:16

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

1,2,3-Trichlorobenzene	< 24.0	ug/Kg	3/29/2022 17:16
1,2,4-Trichlorobenzene	< 24.0	ug/Kg	3/29/2022 17:16
1,2-Dibromo-3-Chloropropane	< 48.1	ug/Kg	3/29/2022 17:16
1,2-Dibromoethane	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichloroethane	< 9.62	ug/Kg	3/29/2022 17:16
1,2-Dichloropropane	< 9.62	ug/Kg	3/29/2022 17:16
1,3-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,4-Dichlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
1,4-Dioxane	< 48.1	ug/Kg	3/29/2022 17:16
2-Butanone	< 48.1	ug/Kg	3/29/2022 17:16
2-Hexanone	< 24.0	ug/Kg	3/29/2022 17:16
4-Methyl-2-pentanone	< 24.0	ug/Kg	3/29/2022 17:16
Acetone	< 48.1	ug/Kg	3/29/2022 17:16
Benzene	< 9.62	ug/Kg	3/29/2022 17:16
Bromochloromethane	< 24.0	ug/Kg	3/29/2022 17:16
Bromodichloromethane	< 9.62	ug/Kg	3/29/2022 17:16
Bromoform	< 24.0	ug/Kg	3/29/2022 17:16
Bromomethane	< 9.62	ug/Kg	3/29/2022 17:16
Carbon disulfide	< 9.62	ug/Kg	3/29/2022 17:16
Carbon Tetrachloride	< 9.62	ug/Kg	3/29/2022 17:16
Chlorobenzene	< 9.62	ug/Kg	3/29/2022 17:16
Chloroethane	< 9.62	ug/Kg	3/29/2022 17:16
Chloroform	< 9.62	ug/Kg	3/29/2022 17:16
Chloromethane	< 9.62	ug/Kg	3/29/2022 17:16
cis-1,2-Dichloroethene	< 9.62	ug/Kg	3/29/2022 17:16
cis-1,3-Dichloropropene	< 9.62	ug/Kg	3/29/2022 17:16
Cyclohexane	< 48.1	ug/Kg	3/29/2022 17:16
Dibromochloromethane	< 9.62	ug/Kg	3/29/2022 17:16
Dichlorodifluoromethane	< 9.62	ug/Kg	3/29/2022 17:16

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4.2 D: 11 41 14		101	747 140		2/20/2022 17/16
<u>Surrogate</u>	Perc	ent Recovery	<u>Limits</u>	Outliers	Date Analyzed
Vinyl chloride	< 9.62	ug/Kg			3/29/2022 17:16
Trichlorofluoromethane	< 9.62	ug/Kg			3/29/2022 17:16
Trichloroethene	< 9.62	ug/Kg			3/29/2022 17:16
trans-1,3-Dichloropropene	< 9.62	ug/Kg			3/29/2022 17:16
trans-1,2-Dichloroethene	< 9.62	ug/Kg			3/29/2022 17:16
Toluene	< 9.62	ug/Kg			3/29/2022 17:16
Tetrachloroethene	< 9.62	ug/Kg			3/29/2022 17:16
Styrene	< 24.0	ug/Kg			3/29/2022 17:16
o-Xylene	< 9.62	ug/Kg			3/29/2022 17:16
Methylene chloride	< 24.0	ug/Kg			3/29/2022 17:16
Methylcyclohexane	< 9.62	ug/Kg			3/29/2022 17:16
Methyl tert-butyl Ether	< 9.62	ug/Kg			3/29/2022 17:16
Methyl acetate	< 9.62	ug/Kg			3/29/2022 17:16
m,p-Xylene	< 9.62	ug/Kg			3/29/2022 17:16
Isopropylbenzene	< 9.62	ug/Kg			3/29/2022 17:16
Freon 113	< 9.62	ug/Kg			3/29/2022 17:16
Ethylbenzene	< 9.62	ug/Kg			3/29/2022 17:16

<u>Surrogate</u>	Percent Recovery	Limits	<u>Outners</u>	<u>Date An</u>	aiyzea
1,2-Dichloroethane-d4	121	74.7 - 140		3/29/2022	17:16
4-Bromofluorobenzene	94.1	68 - 130		3/29/2022	17:16
Pentafluorobenzene	115	70.3 - 140		3/29/2022	17:16
Toluene-D8	121	69 - 138		3/29/2022	17:16

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08074.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	3/28/2022 18:15
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	3/28/2022 18:15
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	3/28/2022 18:15
2,4-Dinitrotoluene	< 40.0	ug/L	130	3/28/2022 18:15
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	3/28/2022 18:15
Hexachlorobenzene	< 40.0	ug/L	130	3/28/2022 18:15
Hexachlorobutadiene	< 40.0	ug/L	500	3/28/2022 18:15
Hexachloroethane	< 40.0	ug/L	3000	3/28/2022 18:15
Nitrobenzene	< 40.0	ug/L	2000	3/28/2022 18:15
Pentachlorophenol	< 80.0	ug/L	100000	3/28/2022 18:15
Pyridine	< 40.0	ug/L	5000	3/28/2022 18:15

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	92.9	29.6 - 139		3/28/2022	18:15
2-Fluorobiphenyl	72.6	5 - 124		3/28/2022	18:15
2-Fluorophenol	72.6	10 - 122		3/28/2022	18:15
Nitrobenzene-d5	65.2	28.7 - 119		3/28/2022	18:15
Phenol-d5	65.5	10 - 115		3/28/2022	18:15
Terphenyl-d14	80.3	32.2 - 142		3/28/2022	18:15

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60705.D

TCLP Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 16:18
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 16:18
2-Butanone	< 100	ug/L	200000	3/29/2022 16:18
Benzene	< 20.0	ug/L	500	3/29/2022 16:18

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Red-03222022

Lab Sample ID: 221212-02A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 16:18
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 16:18
Chloroform	< 20.0	ug/L	6000		3/29/20	22 16:18
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 16:18
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 16:18
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 16:18
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		126	81.1 - 136		3/29/2022	16:18
4-Bromofluorobenzene		98.9	75.8 - 132		3/29/2022	16:18
Pentafluorobenzene		115	82 - 132		3/29/2022	16:18
Toluene-D8		122	64.6 - 137		3/29/2022	16:18

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08071.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 269	ug/Kg		3/25/2022 04:12
1,2,4,5-Tetrachlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,2,4-Trichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,2-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,3-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
1,4-Dichlorobenzene	< 269	ug/Kg		3/25/2022 04:12
2,2-Oxybis (1-chloropropane)	< 269	ug/Kg		3/25/2022 04:12
2,3,4,6-Tetrachlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4,5-Trichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4,6-Trichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dichlorophenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dimethylphenol	< 269	ug/Kg		3/25/2022 04:12
2,4-Dinitrophenol	< 1080	ug/Kg		3/25/2022 04:12
2,4-Dinitrotoluene	< 269	ug/Kg		3/25/2022 04:12
2,6-Dinitrotoluene	< 269	ug/Kg		3/25/2022 04:12
2-Chloronaphthalene	< 269	ug/Kg		3/25/2022 04:12
2-Chlorophenol	< 269	ug/Kg		3/25/2022 04:12
2-Methylnapthalene	< 269	ug/Kg		3/25/2022 04:12
2-Methylphenol	< 269	ug/Kg		3/25/2022 04:12
2-Nitroaniline	< 269	ug/Kg		3/25/2022 04:12
2-Nitrophenol	< 269	ug/Kg		3/25/2022 04:12
3&4-Methylphenol	< 269	ug/Kg		3/25/2022 04:12
3,3'-Dichlorobenzidine	< 269	ug/Kg		3/25/2022 04:12
3-Nitroaniline	< 269	ug/Kg		3/25/2022 04:12
4,6-Dinitro-2-methylphenol	< 360	ug/Kg		3/25/2022 04:12
4-Bromophenyl phenyl ether	< 269	ug/Kg		3/25/2022 04:12
4-Chloro-3-methylphenol	< 269	ug/Kg		3/25/2022 04:12
4-Chloroaniline	< 269	ug/Kg		3/25/2022 04:12

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

4-Chlorophenyl phenyl ether	< 269	ug/Kg	3/25/2022 04:12
4-Nitroaniline	< 269	ug/Kg	3/25/2022 04:12
4-Nitrophenol	< 269	ug/Kg	3/25/2022 04:12
Acenaphthene	< 269	ug/Kg	3/25/2022 04:12
Acenaphthylene	< 269	ug/Kg	3/25/2022 04:12
Acetophenone	< 269	ug/Kg	3/25/2022 04:12
Anthracene	< 269	ug/Kg	3/25/2022 04:12
Atrazine	< 269	ug/Kg	3/25/2022 04:12
Benzaldehyde	< 269	ug/Kg	3/25/2022 04:12
Benzo (a) anthracene	< 269	ug/Kg	3/25/2022 04:12
Benzo (a) pyrene	< 269	ug/Kg	3/25/2022 04:12
Benzo (b) fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Benzo (g,h,i) perylene	< 269	ug/Kg	3/25/2022 04:12
Benzo (k) fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Bis (2-chloroethoxy) methane	< 269	ug/Kg	3/25/2022 04:12
Bis (2-chloroethyl) ether	< 269	ug/Kg	3/25/2022 04:12
Bis (2-ethylhexyl) phthalate	< 269	ug/Kg	3/25/2022 04:12
Butylbenzylphthalate	< 269	ug/Kg	3/25/2022 04:12
Caprolactam	< 269	ug/Kg	3/25/2022 04:12
Carbazole	< 269	ug/Kg	3/25/2022 04:12
Chrysene	< 269	ug/Kg	3/25/2022 04:12
Dibenz (a,h) anthracene	< 269	ug/Kg	3/25/2022 04:12
Dibenzofuran	< 269	ug/Kg	3/25/2022 04:12
Diethyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Dimethyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Di-n-butyl phthalate	< 269	ug/Kg	3/25/2022 04:12
Di-n-octylphthalate	< 269	ug/Kg	3/25/2022 04:12
Fluoranthene	< 269	ug/Kg	3/25/2022 04:12
Fluorene	< 269	ug/Kg	3/25/2022 04:12
Hexachlorobenzene	< 269	ug/Kg	3/25/2022 04:12

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Hexachlorobutadiene	< 269	ug/Kg	3/25/2022 04:12
Hexachlorocyclopentadiene	< 1080	ug/Kg	3/25/2022 04:12
Hexachloroethane	< 269	ug/Kg	3/25/2022 04:12
Indeno (1,2,3-cd) pyrene	< 269	ug/Kg	3/25/2022 04:12
Isophorone	< 269	ug/Kg	3/25/2022 04:12
Naphthalene	< 269	ug/Kg	3/25/2022 04:12
Nitrobenzene	< 269	ug/Kg	3/25/2022 04:12
N-Nitroso-di-n-propylamine	< 269	ug/Kg	3/25/2022 04:12
N-Nitrosodiphenylamine	< 269	ug/Kg	3/25/2022 04:12
Pentachlorophenol	< 538	ug/Kg	3/25/2022 04:12
Phenanthrene	< 269	ug/Kg	3/25/2022 04:12
Phenol	< 269	ug/Kg	3/25/2022 04:12
Pyrene	< 269	ug/Kg	3/25/2022 04:12

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	56.8	35.4 - 92.4		3/25/2022	04:12
2-Fluorobiphenyl	40.5	39.6 - 84.4		3/25/2022	04:12
2-Fluorophenol	45.1	35.5 - 78.9		3/25/2022	04:12
Nitrobenzene-d5	35.1	36.5 - 78.2	*	3/25/2022	04:12
Phenol-d5	47.7	37.1 - 78.3		3/25/2022	04:12
Terphenyl-d14	59.9	42.3 - 103		3/25/2022	04:12

Method Reference(s):EPA 8270DEPA 3546Preparation Date:3/24/2022Data File:B60651.D

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1,2,2-Tetrachloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1,2-Trichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1-Dichloroethane	< 5.71	ug/Kg		3/29/2022 17:35
1,1-Dichloroethene	< 5.71	ug/Kg		3/29/2022 17:35

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

			-1 -1 -
1,2,3-Trichlorobenzene	< 14.3	ug/Kg	3/29/2022 17:35
1,2,4-Trichlorobenzene	< 14.3	ug/Kg	3/29/2022 17:35
1,2-Dibromo-3-Chloropropane	< 28.6	ug/Kg	3/29/2022 17:35
1,2-Dibromoethane	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichloroethane	< 5.71	ug/Kg	3/29/2022 17:35
1,2-Dichloropropane	< 5.71	ug/Kg	3/29/2022 17:35
1,3-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,4-Dichlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
1,4-Dioxane	< 28.6	ug/Kg	3/29/2022 17:35
2-Butanone	< 28.6	ug/Kg	3/29/2022 17:35
2-Hexanone	< 14.3	ug/Kg	3/29/2022 17:35
4-Methyl-2-pentanone	< 14.3	ug/Kg	3/29/2022 17:35
Acetone	< 28.6	ug/Kg	3/29/2022 17:35
Benzene	< 5.71	ug/Kg	3/29/2022 17:35
Bromochloromethane	< 14.3	ug/Kg	3/29/2022 17:35
Bromodichloromethane	< 5.71	ug/Kg	3/29/2022 17:35
Bromoform	< 14.3	ug/Kg	3/29/2022 17:35
Bromomethane	< 5.71	ug/Kg	3/29/2022 17:35
Carbon disulfide	< 5.71	ug/Kg	3/29/2022 17:35
Carbon Tetrachloride	< 5.71	ug/Kg	3/29/2022 17:35
Chlorobenzene	< 5.71	ug/Kg	3/29/2022 17:35
Chloroethane	< 5.71	ug/Kg	3/29/2022 17:35
Chloroform	< 5.71	ug/Kg	3/29/2022 17:35
Chloromethane	< 5.71	ug/Kg	3/29/2022 17:35
cis-1,2-Dichloroethene	< 5.71	ug/Kg	3/29/2022 17:35
cis-1,3-Dichloropropene	< 5.71	ug/Kg	3/29/2022 17:35
Cyclohexane	< 28.6	ug/Kg	3/29/2022 17:35
Dibromochloromethane	< 5.71	ug/Kg	3/29/2022 17:35
Dichlorodifluoromethane	< 5.71	ug/Kg	3/29/2022 17:35

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03 **Date Sampled:** 3/22/2022 15:00

Matrix: Solid Date Received 3/23/2022

Trichloroethene Trichlorofluoromethane	< 5.71 < 5.71	ug/Kg ug/Kg		3/29/2022 3/29/2022	
trans-1,3-Dichloropropene	< 5.71	ug/Kg		3/29/2022	
trans-1,2-Dichloroethene	< 5.71	ug/Kg		3/29/2022	17:35
Toluene	< 5.71	ug/Kg		3/29/2022	17:35
Tetrachloroethene	< 5.71	ug/Kg		3/29/2022	17:35
Styrene	< 14.3	ug/Kg		3/29/2022	17:35
o-Xylene	< 5.71	ug/Kg		3/29/2022	17:35
Methylene chloride	< 14.3	ug/Kg		3/29/2022	17:35
Methylcyclohexane	< 5.71	ug/Kg		3/29/2022	17:35
Methyl tert-butyl Ether	< 5.71	ug/Kg		3/29/2022	17:35
Methyl acetate	< 5.71	ug/Kg		3/29/2022	17:35
m,p-Xylene	< 5.71	ug/Kg		3/29/2022	17:35
Isopropylbenzene	< 5.71	ug/Kg		3/29/2022	17:35
Freon 113	< 5.71	ug/Kg		3/29/2022	17:35
Ethylbenzene	< 5.71	ug/Kg		3/29/2022	17:35

120	74.7 - 140	3/29/2022	17:35
91.7	68 - 130	3/29/2022	17:35
116	70.3 - 140	3/29/2022	17:35
121	69 - 138	3/29/2022	17:35
	91.7 116	91.7 68 - 130 116 70.3 - 140	91.7 68 - 130 3/29/2022 116 70.3 - 140 3/29/2022

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08075.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit	Qualifier	Date Ana	alyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500		3/28/202	2 18:44
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		3/28/202	2 18:44
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		3/28/202	2 18:44
2,4-Dinitrotoluene	< 40.0	ug/L	130		3/28/202	2 18:44
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		3/28/202	2 18:44
Hexachlorobenzene	< 40.0	ug/L	130		3/28/202	2 18:44
Hexachlorobutadiene	< 40.0	ug/L	500		3/28/202	2 18:44
Hexachloroethane	< 40.0	ug/L	3000		3/28/202	2 18:44
Nitrobenzene	< 40.0	ug/L	2000		3/28/202	2 18:44
Pentachlorophenol	< 80.0	ug/L	100000		3/28/202	2 18:44
Pyridine	< 40.0	ug/L	5000		3/28/202	2 18:44
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	Outliers	Date Ana	lyzed
2.4.6-Tribromophenol		92.0	29.6 - 139		3/28/2022	18:44

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	92.0	29.6 - 139		3/28/2022	18:44
2-Fluorobiphenyl	70.0	5 - 124		3/28/2022	18:44
2-Fluorophenol	72.8	10 - 122		3/28/2022	18:44
Nitrobenzene-d5	67.4	28.7 - 119		3/28/2022	18:44
Phenol-d5	67.1	10 - 115		3/28/2022	18:44
Terphenyl-d14	81.1	32.2 - 142		3/28/2022	18:44

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 3/28/2022 **Data File:** B60706.D

TCLP Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	3/29/2022 16:37
1,2-Dichloroethane	< 20.0	ug/L	500	3/29/2022 16:37
2-Butanone	< 100	ug/L	200000	3/29/2022 16:37
Benzene	< 20.0	ug/L	500	3/29/2022 16:37

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Yelw-03222022

Lab Sample ID: 221212-03A **Date Sampled:** 3/22/2022 15:00

Matrix: TCLP Extract Date Received 3/23/2022

Carbon Tetrachloride	< 20.0	ug/L	500		3/29/20	22 16:37
Chlorobenzene	< 20.0	ug/L	100000		3/29/20	22 16:37
Chloroform	< 20.0	ug/L	6000		3/29/20	22 16:37
Tetrachloroethene	< 20.0	ug/L	700		3/29/20	22 16:37
Trichloroethene	< 20.0	ug/L	500		3/29/20	22 16:37
Vinyl chloride	< 20.0	ug/L	200		3/29/20	22 16:37
<u>Surrogate</u>	Percent Recovery		<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4		122	81.1 - 136		3/29/2022	16:37
4-Bromofluorobenzene		93.9	75.8 - 132		3/29/2022	16:37
Pentafluorobenzene		116	82 - 132		3/29/2022	16:37
Toluene-D8		122	64.6 - 137		3/29/2022	16:37

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08072.D

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
1,1-Biphenyl	<278	ug/Kg		3/24/2022	22:55
1,2,4,5-Tetrachlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,2,4-Trichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,2-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,3-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
1,4-Dichlorobenzene	<278	ug/Kg		3/24/2022	22:55
2,2-0xybis (1-chloropropane)	<278	ug/Kg		3/24/2022	22:55
2,3,4,6-Tetrachlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4,5-Trichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4,6-Trichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dichlorophenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dimethylphenol	<278	ug/Kg		3/24/2022	22:55
2,4-Dinitrophenol	<1110	ug/Kg		3/24/2022	22:55
2,4-Dinitrotoluene	<278	ug/Kg		3/24/2022	22:55
2,6-Dinitrotoluene	<278	ug/Kg		3/24/2022	22:55
2-Chloronaphthalene	<278	ug/Kg		3/24/2022	22:55
2-Chlorophenol	<278	ug/Kg		3/24/2022	22:55
2-Methylnapthalene	<278	ug/Kg		3/24/2022	22:55
2-Methylphenol	<278	ug/Kg		3/24/2022	22:55
2-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
2-Nitrophenol	<278	ug/Kg		3/24/2022	22:55
3&4-Methylphenol	<278	ug/Kg		3/24/2022	22:55
3,3'-Dichlorobenzidine	<278	ug/Kg		3/24/2022	22:55
3-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
4,6-Dinitro-2-methylphenol	<556	ug/Kg		3/24/2022	22:55
4-Bromophenyl phenyl ether	<278	ug/Kg		3/24/2022	22:55
4-Chloro-3-methylphenol	<278	ug/Kg		3/24/2022	22:55

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
4-Chloroaniline	<278	ug/Kg		3/24/2022	22:55
4-Chlorophenyl phenyl ether	<278	ug/Kg		3/24/2022	22:55
4-Nitroaniline	<278	ug/Kg		3/24/2022	22:55
4-Nitrophenol	<278	ug/Kg		3/24/2022	22:55
Acenaphthene	<278	ug/Kg		3/24/2022	22:55
Acenaphthylene	<278	ug/Kg		3/24/2022	22:55
Acetophenone	<278	ug/Kg		3/24/2022	22:55
Anthracene	<278	ug/Kg		3/24/2022	22:55
Atrazine	<278	ug/Kg		3/24/2022	22:55
Benzaldehyde	<278	ug/Kg		3/24/2022	22:55
Benzo (a) anthracene	<278	ug/Kg		3/24/2022	22:55
Benzo (a) pyrene	<278	ug/Kg		3/24/2022	22:55
Benzo (b) fluoranthene	<278	ug/Kg		3/24/2022	22:55
Benzo (g,h,i) perylene	<278	ug/Kg		3/24/2022	22:55
Benzo (k) fluoranthene	<278	ug/Kg		3/24/2022	22:55
Bis (2-chloroethoxy) methane	<278	ug/Kg		3/24/2022	22:55
Bis (2-chloroethyl) ether	<278	ug/Kg		3/24/2022	22:55
Bis (2-ethylhexyl) phthalate	<278	ug/Kg		3/24/2022	22:55
Butylbenzylphthalate	<278	ug/Kg		3/24/2022	22:55
Caprolactam	<278	ug/Kg		3/24/2022	22:55
Carbazole	<278	ug/Kg		3/24/2022	22:55
Chrysene	<278	ug/Kg		3/24/2022	22:55
Dibenz (a,h) anthracene	<278	ug/Kg		3/24/2022	22:55
Dibenzofuran	<278	ug/Kg		3/24/2022	22:55
Diethyl phthalate	<278	ug/Kg		3/24/2022	22:55
Dimethyl phthalate	<278	ug/Kg		3/24/2022	22:55
Di-n-butyl phthalate	<278	ug/Kg		3/24/2022	22:55
Di-n-octylphthalate	<278	ug/Kg		3/24/2022	22:55

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

Solid

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
Fluoranthene	<278	ug/Kg		3/24/2022	22:55
Fluorene	<278	ug/Kg		3/24/2022	22:55
Hexachlorobenzene	<278	ug/Kg		3/24/2022	22:55
Hexachlorobutadiene	<278	ug/Kg		3/24/2022	22:55
Hexachlorocyclopentadiene	<1110	ug/Kg		3/24/2022	22:55
Hexachloroethane	<278	ug/Kg		3/24/2022	22:55
Indeno (1,2,3-cd) pyrene	<278	ug/Kg		3/24/2022	22:55
Isophorone	<278	ug/Kg		3/24/2022	22:55
Naphthalene	<278	ug/Kg		3/24/2022	22:55
Nitrobenzene	<278	ug/Kg		3/24/2022	22:55
N-Nitroso-di-n-propylamine	<278	ug/Kg		3/24/2022	22:55
N-Nitrosodiphenylamine	<278	ug/Kg		3/24/2022	22:55
Pentachlorophenol	<556	ug/Kg		3/24/2022	22:55
Phenanthrene	<278	ug/Kg		3/24/2022	22:55
Phenol	<278	ug/Kg		3/24/2022	22:55
Pyrene	<278	ug/Kg		3/24/2022	22:55

Method Reference(s):

EPA 8270D

EPA 3546

Preparation Date:

3/24/2022

Data File: QC Batch ID: B60640.D

QC Datth ID.

QC220324ABNS

QC Number:

Blk 1

Inventum Engineering, P.C.

Client:

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Semi-Volatile Organics (Acid/Base Neutrals)

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: TCLP Fluid

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,4-Dichlorobenzene	<40.0	ug/L		3/28/2022	16:19
2,4,5-Trichlorophenol	<40.0	ug/L		3/28/2022	16:19
2,4,6-Trichlorophenol	<40.0	ug/L		3/28/2022	16:19
2,4-Dinitrotoluene	<40.0	ug/L		3/28/2022	16:19
Cresols (as m,p,o-Cresol)	<80.0	ug/L		3/28/2022	16:19
Hexachlorobenzene	<40.0	ug/L		3/28/2022	16:19
Hexachlorobutadiene	<40.0	ug/L		3/28/2022	16:19
Hexachloroethane	<40.0	ug/L		3/28/2022	16:19
Nitrobenzene	<40.0	ug/L		3/28/2022	16:19
Pentachlorophenol	<80.0	ug/L		3/28/2022	16:19
Pyridine	<40.0	ug/L		3/28/2022	16:19
Surrogate	Percent Recovery	<u>Limits</u>	Outliers	Date Anal	yzed
2,4,6-Tribromophenol	88.1	29.6 - 139		3/28/2022	16:19
2-Fluorobiphenyl	62.6	5 - 124		3/28/2022	16:19
2-Fluorophenol	71.5	10 - 122		3/28/2022	16:19
Nitrobenzene-d5	64.9	28.7 - 119		3/28/2022	16:19
Phenol-d5	65.5	10 - 115		3/28/2022	16:19
Terphenyl-d14	78.7	32.2 - 142		3/28/2022	16:19

Method Reference(s):

EPA 8270D

EPA 3510C

Preparation Date: Data File: 3/28/2022 B60701.D

QC Batch ID: QC220328ABNT

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Page 28 of 40

Client: Inventum Engineering, P.C.

Project Reference: Battery Brick

Lab Project ID: 221212

TCLP Fluid

Matrix:

TCLP Semi-Volatile Organics

QC Batch ID:	QC Number:		Data File:	Preparation Date:		Method Reference(s):	Pentachlorophenol	2,4-Dinitrotoluene	2,4,6-Trichlorophenol	1,4-Dichlorobenzene	Analyte	
				te:		ıce(s):	300	200	300	200	Added	LCS
QC2203	<u> </u>	B60703.D	B60702.D	3/28/2022	EPA 3510C	EPA 8270D	300	200	300	200	Added	LCSD
QC220328ABNT		.D	.D	022	10C	70D	ug/L	ug/L	ug/L	ug/L	Units	Spike
							299	188	285	156	Result	LCS
							298	183	276	156	Result	LCSD
							99.6	93.9	95.0	78.2	1.4	LCS %
							99.2	91.3	92.1	77.8	Recovery	LCSD %
							26.5 - 160	55.2 - 112	50.5 🕒 126	27.5 - 93.4	Limits	% Rec
											Outliers	LCS
											Outliers	LCSD
							0.427	2.79	3.17	0.568		LCSD Relative %
							120	40.9	61.9	71.3	Limit	RPD
											ß	RPD
							3/28/2022	3/28/2022	3/28/2022	3/28/2022	Analyzed	Date

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: Solid

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1,2,2-Tetrachloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1,2-Trichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1-Dichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,1-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
1,2,3-Trichlorobenzene	<5.00	ug/Kg		3/29/2022	14:07
1,2,4-Trichlorobenzene	<5.00	ug/Kg		3/29/2022	14:07
1,2-Dibromo-3-Chloropropane	<10.0	ug/Kg		3/29/2022	14:07
1,2-Dibromoethane	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichloroethane	<2.00	ug/Kg		3/29/2022	14:07
1,2-Dichloropropane	<2.00	ug/Kg		3/29/2022	14:07
1,3-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,4-Dichlorobenzene	<2.00	ug/Kg		3/29/2022	14:07
1,4-Dioxane	<10.0	ug/Kg		3/29/2022	14:07
2-Butanone	<10.0	ug/Kg		3/29/2022	14:07
2-Hexanone	<5.00	ug/Kg		3/29/2022	14:07
4-Methyl-2-pentanone	<5.00	ug/Kg		3/29/2022	14:07
Acetone	<10.0	ug/Kg		3/29/2022	14:07
Benzene	<2.00	ug/Kg		3/29/2022	14:07
Bromochloromethane	<5.00	ug/Kg		3/29/2022	14:07
Bromodichloromethane	<2.00	ug/Kg		3/29/2022	14:07
Bromoform	<5.00	ug/Kg		3/29/2022	14:07
Bromomethane	<2.00	ug/Kg		3/29/2022	14:07
Carbon disulfide	<2.00	ug/Kg		3/29/2022	14:07
Carbon Tetrachloride	<2.00	ug/Kg		3/29/2022	14:07
Chlorobenzene	<2.00	ug/Kg		3/29/2022	14:07

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

Matrix: Solid

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/Kg		3/29/2022	14:07
Chloroform	<2.00	ug/Kg		3/29/2022	14:07
Chloromethane	<2.00	ug/Kg		3/29/2022	14:07
cis-1,2-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
cis-1,3-Dichloropropene	<2.00	ug/Kg		3/29/2022	14:07
Cyclohexane	<10.0	ug/Kg		3/29/2022	14:07
Dibromochloromethane	<2.00	ug/Kg		3/29/2022	14:07
Dichlorodifluoromethane	<2.00	ug/Kg		3/29/2022	14:07
Ethylbenzene	<2.00	ug/Kg		3/29/2022	14:07
Freon 113	<2.00	ug/Kg		3/29/2022	14:07
Isopropylbenzene	<2.00	ug/Kg		3/29/2022	14:07
m,p-Xylene	<2.00	ug/Kg		3/29/2022	14:07
Methyl acetate	<2.00	ug/Kg		3/29/2022	14:07
Methyl tert-butyl Ether	<2.00	ug/Kg		3/29/2022	14:07
Methylcyclohexane	<2.00	ug/Kg		3/29/2022	14:07
Methylene chloride	<5.00	ug/Kg		3/29/2022	14:07
o-Xylene	<2.00	ug/Kg		3/29/2022	14:07
Styrene	< 5.00	ug/Kg		3/29/2022	14:07
Tetrachloroethene	<2.00	ug/Kg		3/29/2022	14:07
Toluene	<2.00	ug/Kg		3/29/2022	14:07
trans-1,2-Dichloroethene	<2.00	ug/Kg		3/29/2022	14:07
trans-1,3-Dichloropropene	<2.00	ug/Kg		3/29/2022	14:07
Trichloroethene	<2.00	ug/Kg		3/29/2022	14:07
Trichlorofluoromethane	<2.00	ug/Kg		3/29/2022	14:07
Vinyl chloride	<2.00	ug/Kg		3/29/2022	14:07

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Blk 1

Lab Project ID:

221212

Matrix:

Solid

Volatile Organics

QC Number:

<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analy	zed
Surrogate		Percent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		124	74.7 - 140		3/29/2022	14:07
4-Bromofluorobenzene		94.2	68 - 130		3/29/2022	14:07
Pentafluorobenzene		116	70.3 - 140		3/29/2022	14:07
Toluene-D8		122	69 - 138		3/29/2022	14:07
Method Reference(s):	EPA 8260C					
	EPA 5035A - L					
Data File:	z08065.D					
QC Batch ID:	voas220329					

Client: Inventum Engineering, P.C.

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	<u>Date</u>
Analyte	Added	Units	Result	Recovery	Limits	<u>Outliers</u>	<u>Analyzed</u>
1,1,1-Trichloroethane	20.0	ug/Kg	21.4	107	70.9 - 135		3/29/2022
1,1,2,2-Tetrachloroethane	20.0	ug/Kg	19.5	97.3	31.6 - 154		3/29/2022
1,1,2-Trichloroethane	20.0	ug/Kg	21.3	107	62 - 132		3/29/2022
1,1-Dichloroethane	20.0	ug/Kg	21.0	105	73 - 128		3/29/2022
1,1-Dichloroethene	20.0	ug/Kg	19.9	99.6	61.7 - 119		3/29/2022
1,2-Dichlorobenzene	20.0	ug/Kg	18.8	94.1	61 - 118		3/29/2022
1,2-Dichloroethane	20.0	ug/Kg	22.0	110	73.4 - 123		3/29/2022
1,2-Dichloropropane	20.0	ug/Kg	21.3	107	71.3 - 123		3/29/2022
1,3-Dichlorobenzene	20.0	ug/Kg	18.2	91.2	68.7 - 112		3/29/2022
1,4-Dichlorobenzene	20.0	ug/Kg	18.3	91.6	66.9 - 113		3/29/2022
Benzene	20.0	ug/Kg	22.2	111	77.8 - 119		3/29/2022
Bromodichloromethane	20.0	ug/Kg	21.5	108	65.7 - 125		3/29/2022
Bromoform	20.0	ug/Kg	18.5	92.5	54.7 - 130		3/29/2022
Bromomethane	20.0	ug/Kg	16.5	82.7	44.6 - 167		3/29/2022
Carbon Tetrachloride	20.0	ug/Kg	21.2	106	61.8 - 138		3/29/2022
Chlorobenzene	20.0	ug/Kg	19.9	99.7	77.2 - 108		3/29/2022
This report is part of a multipage document and should only be explicated in its entirety. The Obeic of Occidents	ralisated in ite	ntinoto The Ch	aim of Custodu	;		-	

Inventum Engineering, P.C.

Client:

Project Reference: Battery Brick

Lab Project ID: 221212

Solid

Matrix:

Volatile Organics

3/29/2022 3/29/2022 3/29/2022		69.3 - 128 64 - 140 51.2 - 160	111 95.5 81.4	22.3 19.1 16.3	ug/Kg ug/Kg ug/Kg	20.0 20.0 20.0	Trichloroethene Trichlorofluoromethane Vinyl chloride
3/29/2022 3/29/2022		67.3 - 127 55 - 126	104 108	20.8 21.6	ug/Kg ug/Kg	20.0 20.0	trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene
3/29/2022		61.4 - 137 71.1 - 124	109	21.7	ug/Kg ug/Kg	20.0	Tetrachloroethene Toluene
3/29/2022 3/29/2022 3/29/2022		61.2 - 130 $71.6 - 112$ $38.2 - 155$	105 97.0	21.0 19.4 20.2	ug/Kg ug/Kg ug/K <i>g</i>	20.0 20.0 20.0	Dibromochloromethane Ethylbenzene Methylene chloride
3/29/2022 3/29/2022 3/29/2022		70.1 - 134 42.4 - 168 66.7 - 122	108 76.6 107	21.5 15.3 21.3	ug/Kg ug/Kg ug/Kg	20.0 20.0 20.0	Chloroform Chloromethane cis-1,3-Dichloropropene
Date ars Analyzed 3/29/2022	LCS Outliers	% Rec Limits 55.5 - 151	<u>LCS %</u> <u>Recovery</u> 94.4	LCS Result	Spike Units ug/Kg	Spike Added 20.0	Analyte Chloroethane

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick Lab Project ID: 221212

Solid

Matrix:

Volatile Organics

Analyte

Spike <u>Spike</u> LCS LCS % % Rec LCS

Added

Units

Result

Recovery

Limits

Outliers

<u>Date</u> Analyzed

 Method Reference(s):
 EPA 8260C

 EPA 5035A - L
 z08064.D

QC Number: LCS 1
QC Batch ID: voas220329

Client:

Inventum Engineering, P.C.

Project Reference:

Battery Brick

Lab Project ID:

221212

Matrix:

TCLP Fluid

TCLP Volatile Organics

<u>Analyte</u>	<u> </u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	zed
1,1-Dichloroethene		<20.0	ug/L		3/29/2022	13:29
1,2-Dichloroethane		<20.0	ug/L		3/29/2022	13:29
2-Butanone		<100	ug/L		3/29/2022	13:29
Benzene		<20.0	ug/L		3/29/2022	13:29
Carbon Tetrachloride		<20.0	ug/L		3/29/2022	13:29
Chlorobenzene		<20.0	ug/L		3/29/2022	13:29
Chloroform		<20.0	ug/L		3/29/2022	13:29
Tetrachloroethene		<20.0	ug/L		3/29/2022	13:29
Trichloroethene		<20.0	ug/L		3/29/2022	13:29
Vinyl chloride		<20.0	ug/L		3/29/2022	13:29
Surrogate	Percent R	ecovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	12:	5	81.1 - 136		3/29/2022	13:29
4-Bromofluorobenzene	10:	3	75.8 - 132		3/29/2022	13:29
Pentafluorobenzene	112	2	82 - 132		3/29/2022	13:29
Toluene-D8	12:	1	64.6 - 137		3/29/2022	13:29
	EPA 8260C					
Data File: QC Batch ID:	EPA 5030 z08063.D voax220329 Blk 1					

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Lab Project ID: 221212

TCLP Fluid

Matrix:

TCLP Volatile Organics

Analyte 1,1-Dichloroethene 1,2-Dichloroethane Renzene		Spike Added 20.0 20.0	Spike Units ug/L ug/L	LCS Result 20.1 21.7	LCS % Recovery 100 109	% Rec Limits 65.5 - 116 78.3 - 122	<u>LCS</u> <u>Outliers</u>	<u>Date</u> <u>Analyzed</u> 3/29/2022 3/29/2022
1.2-Dichloroethane		20.0	1/3n	20.1	100	55.5 = 116		3/29/20
Renzene		30.0	1/ 2/1	3 1	<u> </u>	01.0		2/22/20
		0.01	1/gn	22.1	TII	01.0 - 114		3/29/2022
Carbon Tetrachloride		20.0	ug/L	21.7	109	76.4 - 129		3/29/2022
Chlorobenzene		20.0	ug/L	19.7	98.7	77.2 = 106		3/29/2022
Chloroform		20.0	ug/L	21.2	106	84.5 - 122		3/29/2022
Tetrachloroethene		20.0	ug/L	21.4	107	64.4 - 130		3/29/2022
Trichloroethene		20.0	ug/L	22.4	112	73.4 - 122		3/29/2022
Vinyl chloride		20.0	ug/L	17.0	85.1	50.9 - 164		3/29/2022
Method Reference(s):	EPA 8260C							
	EPA 5030							

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Data File: QC Number: QC Batch ID:

LCS 1 voax220329

z08062.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

	3/22/12/1500	m w o z s c c c	PARADIGM PROJECT REFERENCE PROJECT REFERENCE
	* BEICK-MUTT-03222022 SD * BEYK-PEN-03222022 SD * BEYK-YELW-03222022 SD	G R SAMPLE IDENTIFIER B	ATTIC Codes: AQ - Aqueous Liquid CCLENT: CARRES AND AND STATE: PHOSE STATE: ATTIC CODES: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid MQ - Non-Aqueous Liquid MG - Groundwater
	4 C C C C C C C C C C C C C C C C C C C	TO TIMBECZ WIMZ->-ZOO TOLVOCS TOLSVOCS TOLSVOCS TOLSVOCS TOLSVOCS	CHENSTANT: ZIP: ADDRESS! CITY: STATE: ZIP: PHONE: ATTN: ATTN: ATTN: DW - Drinking Water SO - Soil ndwater NW - Wastewater SL - Sludge
		PAREMARKS	Quotation #: Email: Foxanne-bix@inverdimenging SD-Solid WP-Wipe OL-Oil PT-Paint CK-Caulk AR-Air
	014	PARADIGM LA SAMPLE NUMBER	meng,

ige for sample co	see additional page for sample conditions.					
- f					ĺ	
(reverse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	please indicate EDD needed:	please indicate package needed:		please indicate date needed:	
	3-c ice 1 3/23/12 16:12	Other EDD	Other	Q	Date Needed	
550					Rush 1 day	
5	MATRIAL WAY TOWN		Category B	<u> </u>	Rush 2 day	
	m yesh 3	NYSDEC EDD X	Category A	Ω Ω	Rush 3 day	
	Relinquished By Date/Time	Basic EDD	Batch QC		10 day	
Total Cost:	Samples by Date/Time	None Required	None Required	X Z	Standard 5 day	
20	TRANSPORT SIEX 3/2422 1500	fees may apply.	Availability contingent upon lab approval; additional fees may apply.	y contingent u	Availabilit	
		lements	Report Supplements	Time	Turnaround Time	

Page 39 of 40 P

272

Chain of Custody Supplement

Client:	Inventum	Completed by:	Mollpail
Lab Project ID:	221212	Date:	3/23/22
	Sample Conditi Per NELAC/ELAP 2	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements u No	ipon receipt N/A
Container Type		5035 SUDA	
Comments	Transferd of to 2-5	502 gluniars	
Transferred to method- compliant container	P13 +0663 -01,03		
Headspace (<1 mL) Comments	transferral 02,03 to	1200 ml amber,	las
Preservation Comments			
hlorine Absent <0.10 ppm per test strip) Comments			
olding Time Comments			
e mperature Comments	3°C; and		
ompliant Sample Quantity/Ty			
Comments			

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

221322

Referencing

Battery Brick

Prepared

Tuesday, April 5, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date An	alyzed
1,1-Biphenyl	< 284	ug/Kg	3/30/202	2 13:50
1,2,4,5-Tetrachlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,2,4-Trichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,2-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,3-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
1,4-Dichlorobenzene	< 284	ug/Kg	3/30/202	2 13:50
2,2-Oxybis (1-chloropropane)	< 284	ug/Kg	3/30/202	2 13:50
2,3,4,6-Tetrachlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4,5-Trichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4,6-Trichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dichlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dimethylphenol	< 284	ug/Kg	3/30/202	2 13:50
2,4-Dinitrophenol	< 1140	ug/Kg	3/30/202	2 13:50
2,4-Dinitrotoluene	< 284	ug/Kg	3/30/202	2 13:50
2,6-Dinitrotoluene	< 284	ug/Kg	3/30/202	2 13:50
2-Chloronaphthalene	< 284	ug/Kg	3/30/202	2 13:50
2-Chlorophenol	< 284	ug/Kg	3/30/202	2 13:50
2-Methylnapthalene	< 284	ug/Kg	3/30/202	2 13:50
2-Methylphenol	< 284	ug/Kg	3/30/202	2 13:50
2-Nitroaniline	< 284	ug/Kg	3/30/202	2 13:50
2-Nitrophenol	< 284	ug/Kg	3/30/202	2 13:50
3&4-Methylphenol	< 284	ug/Kg	3/30/202	2 13:50
3,3'-Dichlorobenzidine	< 284	ug/Kg	3/30/202	2 13:50
3-Nitroaniline	< 284	ug/Kg	3/30/202	2 13:50
4,6-Dinitro-2-methylphenol	< 380	ug/Kg	3/30/202	2 13:50
4-Bromophenyl phenyl ether	< 284	ug/Kg	3/30/202	2 13:50
4-Chloro-3-methylphenol	< 284	ug/Kg	3/30/202	2 13:50
4-Chloroaniline	< 284	ug/Kg	3/30/202	2 13:50

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

4-Chlorophenyl phenyl ether	< 284	ug/Kg	3/30/2022 13:50
4-Nitroaniline	< 284	ug/Kg	3/30/2022 13:50
4-Nitrophenol	< 284	ug/Kg	3/30/2022 13:50
Acenaphthene	< 284	ug/Kg	3/30/2022 13:50
Acenaphthylene	< 284	ug/Kg	3/30/2022 13:50
Acetophenone	< 284	ug/Kg	3/30/2022 13:50
Anthracene	< 284	ug/Kg	3/30/2022 13:50
Atrazine	< 284	ug/Kg	3/30/2022 13:50
Benzaldehyde	< 284	ug/Kg	3/30/2022 13:50
Benzo (a) anthracene	< 284	ug/Kg	3/30/2022 13:50
Benzo (a) pyrene	< 284	ug/Kg	3/30/2022 13:50
Benzo (b) fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Benzo (g,h,i) perylene	< 284	ug/Kg	3/30/2022 13:50
Benzo (k) fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Bis (2-chloroethoxy) methane	< 284	ug/Kg	3/30/2022 13:50
Bis (2-chloroethyl) ether	< 284	ug/Kg	3/30/2022 13:50
Bis (2-ethylhexyl) phthalate	< 284	ug/Kg	3/30/2022 13:50
Butylbenzylphthalate	< 284	ug/Kg	3/30/2022 13:50
Caprolactam	< 284	ug/Kg	3/30/2022 13:50
Carbazole	< 284	ug/Kg	3/30/2022 13:50
Chrysene	< 284	ug/Kg	3/30/2022 13:50
Dibenz (a,h) anthracene	< 284	ug/Kg	3/30/2022 13:50
Dibenzofuran	< 284	ug/Kg	3/30/2022 13:50
Diethyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Dimethyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Di-n-butyl phthalate	< 284	ug/Kg	3/30/2022 13:50
Di-n-octylphthalate	< 284	ug/Kg	3/30/2022 13:50
Fluoranthene	< 284	ug/Kg	3/30/2022 13:50
Fluorene	< 284	ug/Kg	3/30/2022 13:50
Hexachlorobenzene	< 284	ug/Kg	3/30/2022 13:50

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

Hexachlorobutadiene	< 284	ug/Kg	3/30/2022 13:50
Hexachlorocyclopentadiene	< 1140	ug/Kg	3/30/2022 13:50
Hexachloroethane	< 284	ug/Kg	3/30/2022 13:50
Indeno (1,2,3-cd) pyrene	< 284	ug/Kg	3/30/2022 13:50
Isophorone	< 284	ug/Kg	3/30/2022 13:50
Naphthalene	< 284	ug/Kg	3/30/2022 13:50
Nitrobenzene	< 284	ug/Kg	3/30/2022 13:50
N-Nitroso-di-n-propylamine	< 284	ug/Kg	3/30/2022 13:50
N-Nitrosodiphenylamine	< 284	ug/Kg	3/30/2022 13:50
Pentachlorophenol	< 568	ug/Kg	3/30/2022 13:50
Phenanthrene	< 284	ug/Kg	3/30/2022 13:50
Phenol	< 284	ug/Kg	3/30/2022 13:50
Pyrene	< 284	ug/Kg	3/30/2022 13:50

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	56.9	35.4 - 92.4		3/30/2022	13:50
2-Fluorobiphenyl	52.5	39.6 - 84.4		3/30/2022	13:50
2-Fluorophenol	57.2	35.5 - 78.9		3/30/2022	13:50
Nitrobenzene-d5	45.2	36.5 - 78.2		3/30/2022	13:50
Phenol-d5	58.1	37.1 - 78.3		3/30/2022	13:50
Terphenyl-d14	56.4	42.3 - 103		3/30/2022	13:50

Method Reference(s): EPA 8270D EPA 3546
Preparation Date: 3/30/2022

Preparation Date: 3/30/2022 **Data File:** B60764.D

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1,2,2-Tetrachloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1,2-Trichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1-Dichloroethane	< 8.00	ug/Kg		4/4/2022 13:36
1,1-Dichloroethene	< 8.00	ug/Kg		4/4/2022 13:36

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

1,2,3-Trichlorobenzene	< 20.0	ug/Kg	4/4/2022 13:36
1,2,4-Trichlorobenzene	< 20.0	ug/Kg	4/4/2022 13:36
1,2-Dibromo-3-Chloropropane	< 40.0	ug/Kg	4/4/2022 13:36
1,2-Dibromoethane	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichloroethane	< 8.00	ug/Kg	4/4/2022 13:36
1,2-Dichloropropane	< 8.00	ug/Kg	4/4/2022 13:36
1,3-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,4-Dichlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
1,4-Dioxane	< 40.0	ug/Kg	4/4/2022 13:36
2-Butanone	< 40.0	ug/Kg	4/4/2022 13:36
2-Hexanone	< 20.0	ug/Kg	4/4/2022 13:36
4-Methyl-2-pentanone	< 20.0	ug/Kg	4/4/2022 13:36
Acetone	< 40.0	ug/Kg	4/4/2022 13:36
Benzene	< 8.00	ug/Kg	4/4/2022 13:36
Bromochloromethane	< 20.0	ug/Kg	4/4/2022 13:36
Bromodichloromethane	< 8.00	ug/Kg	4/4/2022 13:36
Bromoform	< 20.0	ug/Kg	4/4/2022 13:36
Bromomethane	< 8.00	ug/Kg	4/4/2022 13:36
Carbon disulfide	< 8.00	ug/Kg	4/4/2022 13:36
Carbon Tetrachloride	< 8.00	ug/Kg	4/4/2022 13:36
Chlorobenzene	< 8.00	ug/Kg	4/4/2022 13:36
Chloroethane	< 8.00	ug/Kg	4/4/2022 13:36
Chloroform	< 8.00	ug/Kg	4/4/2022 13:36
Chloromethane	< 8.00	ug/Kg	4/4/2022 13:36
cis-1,2-Dichloroethene	< 8.00	ug/Kg	4/4/2022 13:36
cis-1,3-Dichloropropene	< 8.00	ug/Kg	4/4/2022 13:36
Cyclohexane	< 40.0	ug/Kg	4/4/2022 13:36
Dibromochloromethane	< 8.00	ug/Kg	4/4/2022 13:36
Dichlorodifluoromethane	< 8.00	ug/Kg	4/4/2022 13:36

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01 **Date Sampled:** 3/28/2022 14:00

Matrix: Solid Date Received 3/29/2022

S	urrogate	Percent R	ecovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
	Vinyl chloride	< 8.00	ug/Kg			4/4/2022	13:36
	Trichlorofluoromethane	< 8.00	ug/Kg			4/4/2022	13:36
	Trichloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	trans-1,3-Dichloropropene	< 8.00	ug/Kg			4/4/2022	13:36
	trans-1,2-Dichloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	Toluene	< 8.00	ug/Kg			4/4/2022	13:36
	Tetrachloroethene	< 8.00	ug/Kg			4/4/2022	13:36
	Styrene	< 20.0	ug/Kg			4/4/2022	13:36
	o-Xylene	< 8.00	ug/Kg			4/4/2022	13:36
	Methylene chloride	< 20.0	ug/Kg			4/4/2022	13:36
	Methylcyclohexane	< 8.00	ug/Kg			4/4/2022	13:36
	Methyl tert-butyl Ether	< 8.00	ug/Kg			4/4/2022	13:36
	Methyl acetate	< 8.00	ug/Kg			4/4/2022	13:36
	m,p-Xylene	< 8.00	ug/Kg			4/4/2022	13:36
	Isopropylbenzene	< 8.00	ug/Kg			4/4/2022	13:36
	Freon 113	< 8.00	ug/Kg			4/4/2022	13:36
	Ethylbenzene	< 8.00	ug/Kg			4/4/2022	13:36

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
1,2-Dichloroethane-d4	125	74.7 - 140		4/4/2022	13:36
4-Bromofluorobenzene	96.5	68 - 130		4/4/2022	13:36
Pentafluorobenzene	122	70.3 - 140		4/4/2022	13:36
Toluene-D8	124	69 - 138		4/4/2022	13:36

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z08191.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01A **Date Sampled:** 3/28/2022 14:00

Matrix: TCLP Extract Date Received 3/29/2022

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	4/1/2022 18:49
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	4/1/2022 18:49
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	4/1/2022 18:49
2,4-Dinitrotoluene	< 40.0	ug/L	130	4/1/2022 18:49
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	4/1/2022 18:49
Hexachlorobenzene	< 40.0	ug/L	130	4/1/2022 18:49
Hexachlorobutadiene	< 40.0	ug/L	500	4/1/2022 18:49
Hexachloroethane	< 40.0	ug/L	3000	4/1/2022 18:49
Nitrobenzene	< 40.0	ug/L	2000	4/1/2022 18:49
Pentachlorophenol	< 80.0	ug/L	100000	4/1/2022 18:49
Pyridine	< 40.0	ug/L	5000	4/1/2022 18:49

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	88.9	29.6 - 139		4/1/2022	18:49
2-Fluorobiphenyl	65.8	5 - 124		4/1/2022	18:49
2-Fluorophenol	73.3	10 - 122		4/1/2022	18:49
Nitrobenzene-d5	71.8	28.7 - 119		4/1/2022	18:49
Phenol-d5	66.9	10 - 115		4/1/2022	18:49
Terphenyl-d14	77.8	32.2 - 142		4/1/2022	18:49

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 4/1/2022 Data File: 860808.D

TCLP Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,1-Dichloroethene	< 20.0	ug/L	700	4/1/2022 15:32
1,2-Dichloroethane	< 20.0	ug/L	500	4/1/2022 15:32
2-Butanone	< 100	ug/L	200000	4/1/2022 15:32
Benzene	< 20.0	ug/L	500	4/1/2022 15:32

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Battery Brick

Sample Identifier: Brick-Gray-03282022

Lab Sample ID: 221322-01A **Date Sampled:** 3/28/2022 14:00

Matrix: TCLP Extract Date Received 3/29/2022

Carbon Tetrachloride	< 20.0	ug/L	500		4/1/20	22 15:32
Chlorobenzene	< 20.0	ug/L	100000		4/1/20	22 15:32
Chloroform	< 20.0	ug/L	6000		4/1/20	22 15:32
Tetrachloroethene	< 20.0	ug/L	700		4/1/20	22 15:32
Trichloroethene	< 20.0	ug/L	500		4/1/20	22 15:32
Vinyl chloride	< 20.0	ug/L	200		4/1/20	22 15:32
<u>Surrogate</u>	<u>Perc</u>	ent Recovery	<u>Limits</u>	Outliers	Date An	alyzed
1,2-Dichloroethane-d4		131	81.1 - 136		4/1/2022	15:32
4-Bromofluorobenzene		104	75.8 - 132		4/1/2022	15:32
Pentafluorobenzene		129	82 - 132		4/1/2022	15:32
Toluene-D8		132	64.6 - 137		4/1/2022	15:32

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z08162.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

122

CHAIN OF CUSTODY

3/26/2020 11	DATE COLLECTED C		STON STONE	PROJECT REFERENCE				PAR,
1460	TIME	1017	27	REFERE				PARADIGM
	m -l - w O T S O C			NCE		7	1	3
	B > 78 G							
Brick-462-03282022	SAMPLE IDENTIFIER		ous Liquid Aqueous Liquid	NOT PLANTA ON DESTRETA CON	JELS-255 (912) angha	HEGNAGIA STOPE ZBOIZO	ADDRESSI CANISTO DE SOIR C	CLIENT: THEATH MENGINGS OF ONE
ds ds	X - Z - Z = X		WA - Water WG - Groundwater	COM		70	'	
	TO RHEECE WRITZ->-1200 TCLP 836/8370	REQUESTED ANALYSIS		ATTHE SOHN BLACK	PHONE:	CITY: STATE:	ADDRESS:	CLIENT: CAME
		S	SO - Soil SL - Sludge			ZIP:		
	REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk		Email:	Quotation #:	1221322	LAB PROJECT ID
014	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air					

See additional page for sample conditions.

By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

10 day

Standard 5 day

None Required

Turnaround Time

Availability contingent upon lab approval; additional fees may apply.

Report Supplements

Rush 3 day Rush 2 day

Batch QC
Category A
Category B

None Required
Basic EDD
NYSDEC EDD

Date Needed ______ please indicate date needed:

please indicate package needed:

Other EDD

S'C ice J 3

129/12

Date/Time

136/20

Total Cost:

)lease indicate EDD needed :

2012

Chain of Custody Supplement

Client:	Inventum	Completed by:	MyllyVail
Lab Project ID:	221372	Date:	3/29/22
		ition Requirements 2210/241/242/243/244	
Condition	NELAC compliance with the same Yes	ole condition requirements u No	pon receipt N/A
Container Type		5 035	
Comments	Sangle revd in plastie	Buy transferred to 10	booml-wiemouth glassian
Transferred to method- compliant container	promote 1		
Headspace (<1 mL) Comments		tengrost	
Preservation Comments			
Chlorine Absent <0.10 ppm per test strip) Comments			
Holding Time Comments			
emperature Comments	5°ciul		
ompliant Sample Quantity/T Comments	уре		

AmeriSci Richmond

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: 8047631200 FAX: 8047631800

March 19, 2022

56 Services, Inc Attn: Robert Barr PO Box 561 Buffalo, NY 14213

RE: 56 Services, Inc Job Number 122031865 P.O. #22-03037 22-03037; 3875 River road Battery

Dear Robert Barr:

Enclosed are the results of Asbestos Analysis - Bulk Protocol of the following 56 Services, Inc samples, received at AmeriSci on Saturday, March 19, 2022, for a rush turnaround:

01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17

The 17 samples, placed in zip lock bag, were shipped to AmeriSci via Fed Ex 2710 2679 9529 B. 56 Services, Inc requested ELAP PLM/TEM analysis of these samples.

The results of the analyses which were performed under NYSDOH ELAP Lab Certification # 10984 following ELAP 198.4 TEM guidelines are presented within the Summary Table of this report. The presence of matrix reduction data in the Summary Table normally indicates an NOB sample. For NOB samples the individual matrix reduction and TEM analysis results are listed in Table I. Complete PLM results for individual samples analyzed by ELAP 198.1 (friable) and ELAP 198.6 (NOB) are presented in the PLM Bulk Asbestos Report. This combined report relates ONLY to sample analysis expressed as percent composition by weight and percent asbestos. This report must not be used to claim product endorsement or approval by these laboratories, NVLAP, ELAP or any other associated agency. The National Institute of Standards and Technology accreditation requirements, mandate that this report must not be reproduced, except in full without the written approval of the laboratory. This report may contain specific data not covered by NVLAP or ELAP accreditations respectively, if so identified in relevant footnotes.

AmeriSci appreciates this opportunity to serve your organization. Please contact us for any further assistance or with any questions.

Sincerely,

T. Brian Keith

Laboratory Director | Authorized Signatory

AmeriSci Richmond

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: (804) 763-1200 • FAX: (804) 763-1800

PLM Bulk Asbestos Report

56 Services, Inc Attn: Robert Barr

PO Box 561

Buffalo, NY 14213

Date Received 03/19/22 **AmeriSci Job #** 122031865

Date Examined 03/19/22 **P.O.** #

ELAP# 10984 **Page** 1 **of** 4

RE: 22-03037; 3875 River road Battery

	GA	Lab No.	Asbestos Present	Total % Asbestos
01	Location: Debris;	122031865-01 Debris Pile	No	NAD (by NYS ELAP 198.1)
Analyst Desc	ription: Red. Heteroge	neous, Non-Fibrous, Bulk Mat	erial	by Gordon T. Saleeby on 03/19/22
Asbestos	•			
02		122031865-02	No	NAD
	Location: Debris;	Debris Pile		(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbestos	=	terogeneous, Non-Fibrous, Bu 0%	ılk Material	
03		122031865-03	No	NAD
	Location: Debris;	Debris Pile		(by NYS ELAP 198.1)
				by Gordon T. Saleeby on 03/19/22
Asbestos	-	neous, Non-Fibrous, Cementi 0%	tious, Bulk Material	
Asbestos Other M	Types:		tious, Bulk Material No	
Asbestos	Types:	122031865-04		on 03/19/22
Asbestos Other M 04 Analyst Desc Asbestos	Types: aterial: Non-fibrous 10 Location: Debris; ription: Gray, Homogel	0% 122031865-04 Debris Pile neous, Non-Fibrous, Cementit	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby
Asbestos Other M O4 Analyst Desc Asbestos Other M	Types: aterial: Non-fibrous 10 Location: Debris; ription: Gray, Homoger Types:	0% 122031865-04 Debris Pile neous, Non-Fibrous, Cementit	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby
Asbestos Other M 04 Analyst Desc Asbestos	Types: aterial: Non-fibrous 10 Location: Debris; ription: Gray, Homoger Types:	122031865-04 Debris Pile neous, Non-Fibrous, Cementit 0% 122031865-05	No ious, Bulk Material	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22

PLM Bulk Asbestos Report

22-03037; 3875 River road Battery

Client No.	/ HGA	Lab No.	Asbestos Present	Total % Asbestos
06	Location: Debi		No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription: Yellow, Hete tos Types: r Material: Non-fibrous	rogeneous, Non-Fibrous, Bulk M 100%	aterial	
07	Location : Debi		No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription: Off-White, H tos Types: r Material: Non-fibrous	eterogeneous, Non-Fibrous, Bull 100%	k Material	
08	Location: Debi	122031865-08.1 is; Debris Pile	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription: Yellow, Hete tos Types: r Material: Non-fibrous	rogeneous, Non-Fibrous, Brick 100%		
08	Location : Deb	122031865-08.2 is; Debris Pile	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription: Gray, Hetero tos Types: r Material: Non-fibrous	geneous, Non-Fibrous, Mortar 100%		5.1. 55.1. 10.22
09	Location : Debi	122031865-09 is; Debris Pile	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription:Pink, Hetero tos Types: r Material: Non-fibrous	geneous, Non-Fibrous, Bulk Mat 100%	erial	
10	Location : Debi	122031865-10 is; Debris Pile	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asbes	escription: Gray, Homo tos Types: r Material: Non-fibrous	geneous, Non-Fibrous, Cementit	ious, Bulk Material	

Client Name: 56 Services, Inc

PLM Bulk Asbestos Report

22-03037; 3875 River road Battery

Chent No). / HGA	Lab No.	Asbestos Present	Total % Asbestos
11	Location : Deb		No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asb	Description: Brown, Hete estos Types: her Material: Cellulose Tr	erogeneous, Non-Fibrous, Bulk M ace, Non-fibrous 100%	aterial	
 12		122031865-12	No	NAD
	Location : Deb		,,,,	(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Asb	Description: Orange, He estos Types: her Material: Non-fibrous	terogeneous, Non-Fibrous, Bulk I 100%	Material	
13	Location : Deb	122031865-13 ris; Debris Pile	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
-	=	ogeneous, Non-Fibrous, Cement	itious, Bulk Material	
	estos Types: her Material: Non-fibrous	100%		
Ot	* *	122031865-14	No	NAD (by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Otl 14 Analyst Asbe	her Material: Non-fibrous Location: Deb	122031865-14 ris; Debris Pile n, Homogeneous, Non-Fibrous, C		(by NYS ELAP 198.1) by Gordon T. Saleeby
Otl 14 Analyst Asbe	Location: Deb Description: White/Browlestos Types:	122031865-14 ris; Debris Pile n, Homogeneous, Non-Fibrous, C 100% 122031865-15		(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22 NAD (by NYS ELAP 198.1) by Gordon T. Saleeby
Analyst Asbo Oti Analyst Asbo	Location: Deb Description: White/Brownestos Types: her Material: Non-fibrous Location: Deb	122031865-14 ris; Debris Pile n, Homogeneous, Non-Fibrous, C 100% 122031865-15 ris; Debris Pile ogeneous, Non-Fibrous, Cementi	Cementitious, Bulk Material No	(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22 NAD (by NYS ELAP 198.1)
Analyst Asbo Oti Analyst Asbo	Location: Deb Description: White/Brownestos Types: her Material: Non-fibrous Location: Deb Description: Black, Homestos Types:	122031865-14 ris; Debris Pile n, Homogeneous, Non-Fibrous, C 100% 122031865-15 ris; Debris Pile Degeneous, Non-Fibrous, Cementi 100% 122031865-16	Cementitious, Bulk Material No	(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22 NAD (by NYS ELAP 198.1) by Gordon T. Saleeby

PLM Bulk Asbestos Report

22-03037; 3875 River road Battery

Client No. / HGA	Lab No.	Asbestos Present	Total % Asbestos
17	122031865-17	No	NAD
Location: Del	bris; Debris Pile		(by NYS ELAP 198.1) by Gordon T. Saleeby on 03/19/22
Analyst Description: Brown, Ho	mogeneous, Non-Fibrous, Cement	titious, Bulk Material	
Asbestos Types:			
Other Material: Non-fibrou	s 100%		

Reporting Notes:

Analyzed by: Gordon T. Saleeby Date: 3/19/2022

Godon Telley

Reviewed by: Gordon T. Saleeby

Godon T Skel

*NAD = no asbestos detected, Detection Limit <1%, Reporting Limits: CVES = 1%, 400 Pt Ct = 0.25%, 1000 Pt Ct = 0.1%; "Present" or NVA = "No Visible Asbestos" are observations made during a qualitative analysis; NA = not analyzed; NA/PS = not analyzed / positive stop; PLM Bulk Asbestos Analysis using Olympus, Model BH-2 microscope, Serial #237649, by EPA 600/R-93/116 per 40 CFR 763 (NVLAP Lab Code 101904-0) and ELAP PLM Analysis Protocol 198.1 for New York friable samples which includes quantitation of any vermiculite observed (198.6 for NOB samples) or EPA 400 pt ct by EPA 600/M4-82-020 (NYSDOH ELAP Lab # 10984); CA ELAP Lab # 2508; Note: PLM is not consistently reliable in detecting asbestos in floor coverings and similar NOB materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos-containing in New York State (also see EPA Advisory for floor tile, FR 59, 146, 38970, 8/1/94). NIST Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the laboratory. This PLM report relates ONLY to the items tested.

22 - 1				12203		<u> </u>		\(\begin{align*} \begin{align*} align*			SH)48H 3D 5D HT if not selected)
56 Service				Lab ID Numb	DATE	مدم		Sampiin	g <i>D</i> ale	(2-	With Hot dollowy
S 5 1 Project A			VEIC	ROAD	150110	1		Number	of Sample	s Res	ults Due By
_					ion	Sai	nole Forence				Ouantity
ol				_		Δ	chis PN	Par	Hen		
8			18	امکر ا							
5)											
01						,					-
65											
(De								<u> </u>			
<u>or</u>			<u>.</u>	<u> </u>	 						
08			<u>-</u>	-				-			
-01				 				<u> </u>			
10						-			+-		
				 		-		 	+		
12				+					1		
13									1		
15			•						 		
- 19										1	
17			1					V			
		(2 [] [] []							<u></u>		
							· .				
		34.5 5						<u> </u>			
											
				<u> </u>				<u> </u>		-	
					-			-		·	
	٠.						 				
☐ Tros	noite	d' 1 .		Reno	Addition	el No	tae:				
☐ Tran	_		_	Demo		ai ito	.00.				
Addition	al Ins	truction	ns:			Ana	alyze for the f	ollowing S	tate:	Nana anaka	
				gative AND NO	В		Pennsylvania Louisiana				re as per NYS ate is selected
			if / (or as m	_ ACM arked above)			West Virginia				
	-	op per g	-	•			OtherRE	CEIV	email result VED	its to − <u>rob@</u>	56services.com
	_		.					149	N.		
	4	3					IVI.	AR 1 9 20	JZZ		
	lijah	all the				in a					

AmeriSci Richmond

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: 8047631200 FAX: 8047631800

March 16, 2022

56 Services, Inc Attn: Robert Barr PO Box 561 Buffalo, NY 14213

RE: 56 Services, Inc Job Number 122031684 P.O. #22-03026 22-03026; 3875 River Road - Battery

Dear Robert Barr:

Enclosed are the results of Asbestos Analysis - Bulk Protocol of the following 56 Services, Inc samples, received at AmeriSci on Wednesday, March 16, 2022, for a 24 hour turnaround:

01, 02, 03

The 3 samples, placed in zip lock bag, were shipped to AmeriSci via Fed Ex 8170 2012 7535 B. 56 Services, Inc requested ELAP PLM/TEM analysis of these samples.

The results of the analyses which were performed under NYSDOH ELAP Lab Certification # 10984 following ELAP 198.4 TEM guidelines are presented within the Summary Table of this report. The presence of matrix reduction data in the Summary Table normally indicates an NOB sample. For NOB samples the individual matrix reduction and TEM analysis results are listed in Table I. Complete PLM results for individual samples analyzed by ELAP 198.1 (friable) and ELAP 198.6 (NOB) are presented in the PLM Bulk Asbestos Report. This combined report relates ONLY to sample analysis expressed as percent composition by weight and percent asbestos. This report must not be used to claim product endorsement or approval by these laboratories, NVLAP, ELAP or any other associated agency. The National Institute of Standards and Technology accreditation requirements, mandate that this report must not be reproduced, except in full without the written approval of the laboratory. This report may contain specific data not covered by NVLAP or ELAP accreditations respectively, if so identified in relevant footnotes.

AmeriSci appreciates this opportunity to serve your organization. Please contact us for any further assistance or with any questions.

Sincerely,

T. Brian Keith

Laboratory Director | Authorized Signatory

AmeriSci Richmond

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: (804) 763-1200 • FAX: (804) 763-1800

PLM Bulk Asbestos Report

56 Services, Inc Attn: Robert Barr

PO Box 561

Buffalo, NY 14213

Date Received 03/16/22 **AmeriSci Job #** 122031684

Date Examined 03/16/22 **P.O.** #

Page 1 of 1

RE: 22-03026; 3875 River Road - Battery

Client No. / HGA	Lab No.	Asbestos Present	Total % Asbestos
01 Location: Doo	122031684-01 r Gasket Insul, Battery	No	NAD (by NYS ELAP 198.1) by C. David Mintz on 03/16/22
Analyst Description: OffWhite/ Pa Asbestos Types: Other Material: Fibrous glas		s, Bulk Material	
02	122031684-02 r Gasket Insul, Battery	No	NAD (by NYS ELAP 198.1) by C. David Mintz on 03/16/22
Analyst Description: OffWhite/Pa Asbestos Types: Other Material: Fibrous glas	-	s, Bulk Material	5.1.55,15.22
03 Location: Doo	122031684-03 r Gasket Insul, Battery	No	NAD (by NYS ELAP 198.1) by C. David Mintz on 03/16/22
Analyst Description: OffWhite/Pa Asbestos Types: Other Material: Fibrous glas	•	s, Bulk Material	311 00/10/22

Reporting Notes:

Analyzed by: C. David Mintz Date: 3/16/2022

CDanid Mints

Reviewed by: C. David Mintz

C David Mints

*NAD = no asbestos detected, Detection Limit <1%, Reporting Limits: CVES = 1%, 400 Pt Ct = 0.25%, 1000 Pt Ct = 0.1%; "Present" or NVA = "No Visible Asbestos" are observations made during a qualitative analysis; NA = not analyzed; NA/PS = not analyzed / positive stop; PLM Bulk Asbestos Analysis using Olympus, Model BH-2 microscope, Serial #210972, by EPA 600/R-93/116 per 40 CFR 763 (NVLAP Lab Code 101904-0) and ELAP PLM Analysis Protocol 198.1 for New York friable samples which includes quantitation of any vermiculite observed (198.6 for NOB samples) or EPA 400 pt ct by EPA 600/M4-82-020 (NYSDOH ELAP Lab # 10984); CA ELAP Lab # 2508; Note: PLM is not consistently reliable in detecting asbestos in floor coverings and similar NOB materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos-containing in New York State (also see EPA Advisory for floor tile, FR 59, 146, 38970, 8/1/94). NIST Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the laboratory. This PLM report relates ONLY to the items tested.

122031684

22 - 56 Servi	630 ces Pro		umber Lab ID Number	· · · · · · · · · · · · · · · · · · ·	Sampling Date	- 23 RI	USH 48H 3D 5D 24H if not selected)
				BATTERY		,	,
Project .			- voice fectory	1511/6109	Number of Sar	mples Re	sults Due By
	i ge		in and a second second		es 186 (d).	i filozofia	Quantity
O			Door GASKET 11	usil fattery	Battery	Downs .	
o		ļ.,		1	/		
O.			↓	V			
	-	-			***		
	_						
	-	-					
		ļ					
	-	-	-				
-		-		·	_		
	-						
	1	- (4 ·					
	<u> </u>	-					
	-	-					
	-						
	-	ļ					
	1						
	 						
	-						
-	+			·			
_	nsite _	<u> </u>	Additional Notes:			- ·	<u> </u>
☐ Du Additio		ter rati	one:	Analyze for the	following State:		
☐ Ana	alyze PL p ALL a M Analy	M then nalysis	n TEM if negative AND NOB s if ACM nly (or as marked above) group:	☐ Pennsylvania ☐ Louisiana ☐ West Virginia	a	If no other st	ze as per NYS rate is selected
	2	u			MAR 16	2022 **********************************	

3. Brick Volume Estimate

Battery Tunnel Quantities

R. Birx

6/28/2022

Totals (Cubic Yards)	
4.5' Battery Brick	880
6" No. 57 Stone	60
3' Surface Fill (from excavated windrow)	560

Tunnel Dimensions

Length (ft)	400
West Depth (ft)	10

East Depth (ft) 14 (Estimated at stack base)

Tunnel Width (ft) 8

Tunnel Wall Area (ft2) (CAD) 4800 (Elevation View/Side wall)

Total Tunnel Vol (ft3) 38400 Total Tunnel Vol (CY) 1500

Stone bedding and Pipe Cover

0.5 foot of 57 stone vol (ft3) 1600 0.5 foot of 57 stone vol (CY) 60

Battery Brick Fill Volume Thickness (ft)

Battery Brick Vol (ft3) 21700 4.5

Battery Brick Vol (CY) 880

Windrow - Excavated Material Thickness (ft)

Volume (ft3) 15100 3

Volume (CY) 560
Vol Concrete Pile (ft3) 1200
Vol Concrete Pile (CY) 44

Conveyance Line

Distance (ft) (TBD) 1100 (1028 Measured in CAD)